Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

1. Электризация тел, т. е. возникновение в них электрического состояния, происходит при чрезвычайно разнообразных процессах, совершаемых с этими телами. Почти всякое механическое действие, 2 страница



15. Работа электрического тока

За время t по цепи протекало количество электричества q. Силы электрического поля, действующего вдоль проводника, перенесли за это время заряд q из точки А в точку Б. Работа электрических сил поля, или, что то же, работа элек­трического тока, может быть подсчитана по формуле

Так как q = It, то окончательно получим

где А — работа, дж;

I — ток, а;

t — время, сек;

U —напряжение, в.

По закону Ома, U= Ir. Поэтому формулу работы можно напи­сать и так:

 

16. Мощность постоянного тока

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то среднюю мощность можно вычислить по формулам:

 

17. Электрический ток в электролитах

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией. Например, хлорид меди CuCl2 диссоциирует в водном растворе на ионы меди и хлора:

При подключении электродов к источнику тока ионы под действием электрического поля начинают упорядоченное движение: положительные ионы меди движутся к катоду, а отрицательно заряженные ионы хлора – к аноду (рис 1.15.1).

Достигнув катода, ионы меди нейтрализуются избыточными электронами катода и превращаются в нейтральные атомы, оседающие на катоде. Ионы хлора, достигнув анода, отдают по одному электрону. После этого нейтральные атомы хлора соединяются попарно и образуют молекулы хлора Cl2. Хлор выделяется на аноде в виде пузырьков.



Во многих случаях электролиз сопровождается вторичными реакциями продуктов разложения, выделяющихся на электродах, с материалом электродов или растворителей. Примером может служить электролиз водного раствора сульфата меди CuSO4 (медный купорос) в том случае, когда электроды, опущенные в электролит, изготовлены из меди.

Диссоциация молекул сульфата меди происходит по схеме

Нейтральные атомы меди отлагаются в виде твердого осадка на катоде. Таким путем можно получить химически чистую медь. Ион отдает аноду два электрона и превращается в нейтральный радикал SO4 вступает во вторичную реакцию с медным анодом:

SO4 + Cu = CuSO4.

Образовавшаяся молекула сульфата меди переходит в раствор.

Таким образом, при прохождении электрического тока через водный раствор сульфата меди происходит растворение медного анода и отложение меди на катоде. Концентрация раствора сульфата меди при этом не изменяется.

Рисунок 1.15.1.

Электролиз водного раствора хлорида меди

19. Ионизация газов

Отрыв электрона от атома (ионизация газа) требует затраты определенной энергии - энергии ионизации. Она зависит от строения атома и поэтому различна для разных
веществ.

После прекращения действия ионизатора число ионов в газе с течением времени уменьшается и конце концов ионы исчезают вовсе. Исчезновение ионов объясняется тем, что ионы и электроны участвуют в тепловом движении и поэтому соударяются друг с другом. При столкновении положительного иона и электрона они воссоединяются в нейтральный атом. Точно так же при столкновении положительного и отрицательного ионов отрицательный ион может отдать свой избыточный электрон положительному иону и оба они превратятся в нейтральные атомы. Это процесс взаимной ионизации ионов называется рекомбинацией ионов.

При рекомбинации положительного иона и электрона или двух ионов высвобождается определенная энергия, равная энергии, затраченной на ионизацию. Она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации). Если концентрация положительных и отрицательных ионов велика, то и число ежесекундно происходящих актов рекомбинации будет большим, и свечение рекомбинации может быть очень сильным. Излучение света при рекомбинации является одной из причин свечения многих форм газового разряда.

ЭЛЕКТРИЧЕСКИЕ РАЗРЯДЫ В ГАЗАХ -прохождение электрич. тока через ионизованные газы, возникновение и поддержание ионизованного состояния под действием электрич. поля. Термин "разряд" возник от обозначения процесса разрядки конденсатора через цепь, включающую в себя газовый промежуток, что происходит, когда напряжение превышает порог пробоя промежутка. Ныне это слово употребляют в более широком смысле.

Существует множество видов Э. р. в г. в зависимости от характера приложенного поля (пост. электрич. поле, переменное, импульсное, ВЧ, СВЧ), от давления газа, формы и расположения электродов и т. п. Ниже даны общее описание и примерная классификация разрядных явлений, рассмотрены их осн. составляющие элементы и более подробно- важнейшие виды разрядов.

Разряды в постоянном поле. Законы прохождения электрич. тока через газы значительно сложнее, чем через металлы и электролиты; лишь в редких случаях они подчиняются закону Ома. Их электрич. свойства описывают вольт-амперной характеристикой (BAX). Если в стеклянную трубку, наполненную к--л. газом, ввести два электрода, подключённые к источнику пост, напряжения, то даже при небольшом напряжении (V <100 В) сверхчувствительный прибор зарегистрирует протекание очень слабого тока ~10-15 А. Ток создаётся "вытягиванием" полем на электроды зарядов, образующихся под действием космич. лучей и естеств. радиоактивности. Если облучать газ рентг. или радиоакт. источником, ток повысится до 10-6 А. При повышении напряжения ток сначала возрастает, затем достигает насыщения (чему соответствует полное вытягивание всех зарядов, образуемых внеш. источником)-участок AB на рис. 1.

Рис. 1. Вольт-амперная характеристика газовых разрядов: AB - несамостоятельный разряд; BC-тёмный таунсендовский; DE - нормальный тлеющий; EF -аномальный тлеющий; FG -переход в дугу; GH -дуговой; -нагрузочная прямая.

Такие разряды и ток, к-рые существуют только при действии постороннего ионизующего агента или, напр., благодаря электронной эмиссии, вызванной накаливанием катода, наз. несамостоятельными.

При нек-ром напряжении, зависящем от рода газа, давления r и расстояния между электродами d, происходит пробой и зажигается самостоятельный разряд, к-рый не нуждается в постороннем источнике ионизации.

Пробой газа начинается от случайных или искусственно впрыскиваемых нач. электронов, к-рые набирают в элек-трич. поле энергию, а затем теряют её на возбуждение и ионизацию атомов. В результате ионизации вместо одного энергичного электрона появляются два медленных, они снова набирают энергию и т. д.- развивается лавина электронная. За с ток вырастает на неск. порядков.
Дальнейший ход процесса зависит от ряда условий. При небольших давлениях (~10-1 -10 тор) и очень большом электрич. сопротивлении внеш. цепи ограничивающем ток величиной ~10-6 А, зажигается тёмный (таунсен-довский) разряд (участок BC на рис. 1); при несколько меньших сопротивлениях - тлеющий разряд (участок CF). Для последнего характерны ток (в трубках радиуса R~1 см) и напряжение В. При большом межэлектродном расстоянии образуется однородный светящийся столб (положит. столб разряда), представляющий собой плазму. Плазма тлеющего разряда неравновесная, электронная темп-pa К значительно больше газовой темп-ры степень ионизации плазмы тлеющего разряда низкая, ~10-8- 10-6, в 102-104 раз меньше термодинамически равновесной, отвечающей Те. Если r порядка атмосферного, сопротивление мало, а источник тока мощный, то вскоре после пробоя зажигается дуговой разряд, для к-poro характерны сильный ток низкое напряжение В (участок CH на рис. 1), ярко светящийся столб.

В дуге выделяется большая мощность, стеклянная трубка быстро разрушилась бы от перегрева. Длительно поддерживать дугу в замкнутом сосуде можно только при спец. охлаждении. Дугу часто зажигают в открытом воздухе. В дуговом разряде плазма чаще всего равновесная, с К и соответствующей таким темп-рам степенью ионизации Какой разряд получится после пробоя, зависит от давления, напряжения и сопротивления и на графике определяется местом пересечения BAX разряда нагрузочной прямой -эдс источника питания (рис. 1).

 

18 Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.

Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создается электродами — проводниками, соединёнными с полюсами источника электрической энергии. Анодом при электролизе называется положительный электрод, катодом — отрицательный[1]. Положительные ионы — катионы — (ионы металлов, водородные ионы, ионы аммония и др.) — движутся к катоду, отрицательные ионы — анионы — (ионы кислотных остатков и гидроксильной группы) — движутся к аноду.

Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений[источник не указан 733 дня], диоксида марганца[2], пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция, электрорафинирование).

Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации).

В 1832 году Фарадей установил, что масса M вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит:

если через электролит пропускается в течение времени t постоянный ток с силой тока I. Коэффициент пропорциональности называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

 

20. Електричний розряд у розріджених газах

- Люминесценцией называется всякое свечением (излучение телами видимых лучей света), не вызванное сильным повышением температуры и происходящее при температуре светящегося тела, значительно более низкой, чем та наименьшая температура (около 300 - 400°), при которой абсолютно черное тело начинает излучать количество световой энергии видимых длин волн достаточное для того, чтобы вызвать впечатление на сетчатку глаза. Из всех видов люминесценции (см.) наиболее разнообразна по своим проявлениям Э., т. е. свечением газов при низких температурах вследствие прохождения по ним электрических разрядов [Возможно, что всякое свечение газа представляет собой явление люминесценции и что температурное свечение газа невозможно. Вопрос этот до сих пор является нерешенным.]. Явления Э. крайне сложны, разнообразны и непостоянны, существенно меняясь при малейшем изменении внешних условий получения разряда. Механизм этих явлений совершенно неизвестен и даже какой-либо гипотетической картины этого механизма, которая охватывала бы и описала бы всю совокупность известных явлений Э., до сих пор не существует [Этого можно ожидать от электронной теории (см.), которой уже удалось удовлетворительно объяснить ряд частных случаев разряда.]. В виду этого вся эта область науки представляет в настоящее время лишь совокупность огромного количества наблюденных фактов, почти не связанных друг с другом; даже номенклатура этой области еще не вполне установилась. Поэтому в дальнейшем изложении необходимо ограничиться перечислением и описанием наиболее характерных видов Э. с их наиболее определенными и постоянными признаками.

Газы и пары представляют в обычных условиях совершенные изоляторы по отношению к электрическим силам. Поэтому, если в газовой атмосфере установить на некотором расстоянии друг от друга два проводника и поддерживать между ними некоторую постоянную разность потенциалов, то в обычных условиях и при не слишком большой разности потенциалов между проводниками, уравнения этих потенциалов в виде тока по газу между проводниками не произойдет. При некоторой достаточно большой разности потенциалов измерительные инструменты, соединенные с проводниками, докажут, однако, довольно быструю потерю электричества с проводников. Если мы наблюдения будем производить в темной комнате, то заметим, что эта потеря сопровождается рядом световых явлений, именно свечением поверхностей проводников и газов вблизи этих поверхностей. Совокупность всех явлений, вызывающих и сопровождающих эти потери электричества с проводников, называется тихим разрядом.

 

21Электрический ток в вакууме

Движение заряженных свободных частиц, полученных в результате эмиссии, в вакууме под действием электрического поля

Для получения электрического тока в вакууме необходимо наличие свободных носителей. Получить их можно за счет испускания электронов металлами - электронной эмиссии (от латинского emissio - выпуск).

Как известно, при обычных температурах электроны удерживаются внутри металла, несмотря на то, что они совершают тепловое движение. Следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла. Это силы, возникающие вследствие притяжения между электронами и положительными ионами кристаллической решетки. В результате в поверхностном слое металлов появляется электрическое поле, а потенциал при переходе из внешнего пространства внутрь металла увеличивается на некоторую величину Dj. Соответственно потенциальная энергия электрона уменьшается на eDj.

Распределение имеет вид потенциальной ямы, ее глубина eDj=W0 - Ec (электронное сродство); Ф = W0 - F - термоэлектронная работа выхода (работа выхода).

Условие вылета электрона из металла: W і W0, где W - полная энергия электрона внутри металла.

При комнатных температурах это условие выполняется лишь для ничтожной части электронов, значит, для увеличения числа покидающих металл электронов необходимо затратить определенную работу, то есть сообщить им дополнительную энергию, достаточную для вырывания из металла, наблюдая электронную эмиссию: при нагревании металла - термоэлектронную, при бомбардировке электронами или ионами - вторичную, при освещении - фотоэмиссию.

Рассмотрим термоэлектронную эмиссию.

Если испущенные раскаленным металлом электроны ускорить электрическим полем, то они образуют ток. Такой электронный ток может быть получен в вакууме, где столкновения с молекулами и атомами не мешают движению электронов.

Для наблюдения термоэлектронной эмиссии может служить пустотная лампа, содержащая два электрода: один в виде проволоки из тугоплавкого материала (молибден, вольфрам и др.), накаливаемый током (катод), и другой, холодный электрод, собирающий термоэлектроны (анод). Аноду чаще всего придают форму цилиндра, внутри которого расположен накаливаемый катод.

 

22. Полупроводники́ — материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры[1].

Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий около 30 % земной коры.

В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи абсолютного нуля температуры полупроводники имеют свойства диэлектриков.

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Примесная проводимость

Для создания полупроводниковых механизмов используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

 

23. Полупроводниковый диод состоит из двух типов полупроводников — дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.

В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.

Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока.

Транзистор — полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором. Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор. Биполярный транзистор используют для усиления электрического тока.

Изобретение микросхем началось с изучения свойств тонких оксидных плёнок, проявляющихся в эффекте плохой электропроводимости при небольших электрических напряжениях. Проблема заключалась в том, что в месте соприкосновения двух металлов не происходило электрического контакта или он имел полярные свойства. Глубокие изучения этого феномена привели к изобретению диодов, а позже транзисторов и интегральных микросхем

В настоящее время большая часть интегральных схем проектируется при помощи специализированных САПР, которые позволяют автоматизировать и значительно ускорить производственные процессы, например, получение топологических фотошаблонов.

 

24. Магнитные явления были известны еще в древнем мире. Компас был изобретен более 4500 лет тому назад. В Европе он появился приблизительно в XII веке новой эры. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом и возникло представление о магнитном поле.

По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля.

Источниками магнитного поля являются движущиеся электрические заряды (токи). Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).

Ученые XIX века пытались создать теорию магнитного поля по аналогии с электростатикой, вводя в рассмотрение так называемые магнитные заряды двух знаков (например, северный N и южный S полюса магнитной стрелки). Однако опыт показывает, что изолированных магнитных зарядов не существует.

Магнитное поле токов принципиально отличается от электрического поля. Магнитное поле, в отличие от электрического, оказывает силовое действие только на движущиеся заряды (токи).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности электрического поля. Такой характеристикой является вектор магнитной индукции который определяет силы, действующие на токи или движущиеся заряды в магнитном поле.

За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно ориентирующийся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства определить направление вектора Такое исследование позволяет наглядно представить пространственную структуру магнитного поля. Аналогично силовым линиям в электростатике можно построить линии магнитной индукции, в каждой точке которых вектор направлен по касательной. Пример линий магнитной индукции полей постоянного магнита и катушки с током приведен на рис.

 

Обратите внимание на аналогию магнитных полей постоянного магнита и катушки с током. Линии магнитной индукции всегда замкнуты, они нигде не обрываются. Это означает, что магнитное поле не имеет источников – магнитных зарядов. Силовые поля, обладающие этим свойством, называются вихревыми. Картину магнитной индукции можно наблюдать с помощью мелких железных опилок, которые в магнитном поле намагничиваются и, подобно маленьким магнитным стрелкам, ориентируются вдоль линий индукции.

 

25.Графическое изображение магнитного поля прямого проводника с током.

Соленоида

26. Зако́н Ампе́ра — закон взаимодействия постоянных токов. Установлен Андре Мари Ампером в 1820. Из закона Ампера следует, что параллельные проводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Магнитная проницаемость — физическая величина, характеризующая связь между магнитной индукцией B и напряжённостью магнитного поля H в веществе. Впервые встречается в работе Вернера Сименса "Beiträge zur Theorie des Elektromagnetismus" ("Вклад в теорию электромагнетизма") в 1881 году[1]. В общем случае зависит как от свойств вещества, так и от величины и направления магнитного поля.

Обычно обозначается греческой буквой μ. Может быть как скаляром (у изотропных веществ), так и тензором (у анизотропных).

Магнитная постоянная — физическая константа. Магнитная постоянная равна:

Гн/м Н/А²

 

 

27. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила , с которой магнитное поле действует на элемент объёма dV проводника с током плотности , находящегося в магнитном поле с индукцией :

.

Если ток течёт по тонкому проводнику, то , где — «элемент длины» проводника — вектор, по модулю равный dl и совпадающий по направлению с током.

Основной характеристикой магнитного поля является его сила, определяемая вектором магнитной индукции (вектор индукции магнитного поля)[1]. В СИ магнитная индукция измеряется в теслах (Тл), в системе СГС в гауссах. Магни́тная инду́кция — векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства. Показывает, с какой силой магнитное поле действует на заряд , движущийся со скоростью .


Дата добавления: 2015-09-30; просмотров: 29 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.024 сек.)







<== предыдущая лекция | следующая лекция ==>