Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

21. Метод валентных связей (ВС)



21. МЕТОД ВАЛЕНТНЫХ СВЯЗЕЙ (ВС)

1.По методу ВС химическая связь между двумя атомами возникает в результате перекрывания атомных орбиталей (АО) с образованием электронных пар.

2.Образованная электронная пара локализована между двумя атомами. Такая связь является двухцентровой и двухэлектронной.

3.Химическая связь образуется только при взаимодействии электронов с антипараллельными спинами.

4.Характеристики химической связи (энергия, длина, полярность, валентные углы) определяется типом перекрывания АО.

5.Ковалентная связь направлена в сторону максимального перекрывания АО реагирующих атомов.

В образовании ковалентной связи могут принимать участие АО как одинаковой, так и различной симметрии.

 

Гибридизация орбиталей — концепция смешения разных, но близких по энергии орбиталей данного атома, с возникновением того же числа новых гибридных орбиталей, одинаковых по энергии и форме. Гибридизация атомных орбиталей происходит при возникновении ковалентной связи между атомами. Гибридизация орбиталей очень полезна при объяснении формы молекулярных орбиталей и является интегральной частью теории валентных связей. Теория гибридизации была предложена американским химиком Лайнусом Полингом для объяснения структуры таких молекул как метан. Исторически применялась только для простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода. Поэтому в настоящее время используется в основном в педагогических целях и в синтетической органической химии.

sp3-Гибридизация (характерна для алканов)

гибридизация, в которой участвуют атомные орбитали одного s- и трех p-электронов. Четыре sp3-гибридные орбитали симметрично ориентированны в пространстве под углом 109°28'. Пространственная конфигурация молекулы, центральный атом которой образован sp3-гибридными орбиталями – тетраэдр

sp2-гибридизация (характерна для алкенов, диенов и аренов)

Три sp² орбиталиПроисходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей



sp-гибридизация (характерна для алкинов)

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

 

 

22. Сигма- и пи-связи (σ- и π-связи) ковалентные химические связи, характеризующиеся определенней, но различной пространственной симметрией распределения электронной плотности. Как известно, ковалентная связь образуется в результате обобществления электронов взаимодействующих атомов. Результирующее электронное облако σ-связи симметрично относительно линии связи, т. е. линии, соединяющей ядра взаимодействующих атомов. Простые связи в химических соединениях обычно являются (т-связями (см. Простая связь). Электронное облако π-связи симметрично относительно плоскости, проходящей через линию связи (рис. 1, б), причём в этой плоскости (называемой узловой) электронная плотность равна нулю. Употребление греческих букв σ и π связано с соответствием их латинским буквам s и р в обозначении электронов атома, при участии которых впервые появляется возможность для образования σ- и π-связей соответственно. Поскольку облака атомных р -орбиталей (px, ру, pz) симметричны относительно соответствующих осей декартовых координат (х, у, z), то, если одна р -орбиталь, например pz, принимает участие в образовании σ-связи (ось z — линия связи), две оставшиеся р -орбитали (px, py) могут принять участие в образовании двух π-связей (их узловые плоскости будут yz и xz соответственно; см. рис. 2). В образовании σ и π-связей могут принять участие также d - (см. рис. 1) и f -электроны атома.

 

Рис. 1. Схематическое изображение пространственной ориентации орбиталей при образовании σ-связи в результате s — s-, s — pσ-, pσ— pσ-взаимодействий (а) и π-связи в результате pπ —, pπ —, dπ — dπ — взаимодействий (б).

Рис. 2. Схематическое изображение облаков px-, ру-, pz- электронов. Показаны оси декартовых координат и узловые плоскости px- и ру-орбиталей.

23. Для большинства двухатомных молекул график зависимости потенциальной энергии от межатомного расстояния представляет асимметричную кривую с минимумом энергии и диссоциационным пределом.

Если в основном электронном состоянии удалить взаимодействующие ядра на бесконечно большое расстояние, то энергия системы будет суммой электронных энергий отдельных: (EА + EВ). При сближении ядер электронная энергия системы понижается (начинается их притяжение), проходит через минимум, EAB, (равенство сил притяжения и отталкивания) и возрастает за счет отталкивания ядер. Точка минимума кривой обозначается как De, значение которой измерить нельзя. Расстояние между ядрами, соответствующее этой точке обозначают как rе

- равновесное расстояние. На самом деле ядра колеблются вокруг точки минимума – на уровне энергии нулевого колебательного уровня, Do, и среднее межатомное расстояние, ro, немного больше равновесного, т.к.потенциальная кривая асимметрична. Энергия нулевого колебательного уровня немного выше минимума электронной энергии. Энергия De является разницей в электронной энергии удаленных на бесконечное расстояние атомов и молекулы в основном электронном состоянии. В опытах определяют Do, отсчитывая энергию от нулевого колебательного уровня.(см. рисунок)

 

24. При использовании метода молекулярных орбиталей считается, в отличие от метода валентных связей, что каждый электрон находится в поле всех ядер. При этом связь не обязательно образована парой электронов. Например, ион Н2+ состоит из двух протонов и одного электрона. Между двумя протонами действуют силы отталкивания (рис. 30), между каждым из протонов и электроном - силы притяжения. Химическая частица образуется лишь в том случае, если взаимное отталкивание протонов компенсируется их притяжением к электрону. Это возможно, если электрон расположен между ядрами - в области связывания (рис. 31). В противном случае силы отталкивания не компенсируются силами притяжения - говорят, что электрон находится в области антисвязывания, или разрыхления.

1. Молекулярный ион водорода H2+ содержит два протона, заряженных положительно, и один электрон, заряженный отрицательно. Единственный электрон компенсирует электротатическое отталкивание двух протонов и удерживает их на расстоянии dHH = 1,06 Å. Центр электронной плотности электронного облака (орбитали) равноудалён от обоих протонов на боровский радиус α0 = 0,53 Å и является центром симметрии молекулярного иона водорода H2+

Молекулярный ион водорода — простейшая двухатомная молекула H2+, образуется при ионизации молекулы водорода. В молекулярном ионе H2+ образуется одноэлектроннаяхимическая связь с расстоянием dHH = 1,07Å. Одноэлектронная связь менее прочна (энергия разрыва 61 ккал/моль), чем обычная двухэлектронная связь в нейтральной молекуле водорода (dHH=0,74Å, энергия разрыва 104 ккал/моль)[1]. Расчеты зависимостей полной энергии и её компонент от межъядерного расстояния для простейшей структуры с химической связью — молекулярного иона водорода H2+ с одноэлектронной связью — показывают, что минимум полной энергии, который достигается при равновесном межъядерном расстоянии, равном 1,06Å, связан с резким понижением потенциальной энергии электрона вследствие концентрации и сжатия облака электронной плотности в межъядерной области.[2] Можно представить образование иона H2+ как результат реакции атома водорода и протона:

H+ H+ → H2+ + 61 ккал

или ионизацию молекулы водорода

H2 → H2+ + e — 357 ккал

 

36. при Δ H <0 и Δ S >0 процесс протекает самопроизвольно при любых температурах. Напротив, при Δ H >0 и Δ S <0 процесс принципиально неосуществим. Если же знаки Δ H и Δ S совпадают, то реакция может протекать самопроизвольно в некотором интервале температур. Если Δ H =0 (реакция не сопровождается тепловым эффектом), то возможность протекания процесса полностью определяется энтропией. В случае, когда Δ S =0 определяющую роль играет энтальпийный фактор.

 

37. Конста́нта равнове́сия — величина, определяющая для данной химической реакции соотношение между термодинамическими активностями (либо, в зависимости от условий протекания реакции, парциальными давлениями, концентрациями или фугитивностями) исходных веществ и продуктов в состоянии химического равновесия (в соответствии с законом действующих масс). Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции.

Условие химического равновесия в закрытой системе:

В общем виде условие химического равновесия можно записать следующим образом:

 

 

38.Химическая кинетика - раздел физической химии, изучающий скорости химических реакций. Основные задачи химической кинетики: 1) расчет скоростей реакций и определение кинетических кривых, т.е. зависимости концентраций реагирующих веществ от времени (прямая задача); 2) определение механизмов реакций по кинетическим кривым (обратная задача).Скорость химической реакции описывает изменение концентраций реагирующих веществ в единицу времени. Для реакции

a A + b B +... d D + e E +...

скорость реакции определяется следующим образом:

,

где квадратные скобки обозначают концентрацию вещества (обычно измеряется в моль/л), t - время; a, b, d, e - стехиометрические коэффициенты в уравнении реакции.

Скорость реакции зависит от природы реагирующих веществ, их концентрации, температуры и наличия катализатора. Зависимость скорости реакции от концентрации описывается основным постулатом химической кинетики - законом действующих масс:

Скорость химической реакции в каждый момент времени пропорциональна текущим концентрациям реагирующих веществ, возведенным в некоторые степени:

,

где k - константа скорости (не зависящая от концентрации); x, y - некоторые числа, которые называют порядком реакции по веществам A и B, соответственно. Эти числа в общем случае никак не связаны с коэффициентами a и b в уравнении реакции. Сумма показателей степеней x + y называется общим порядком реакции. Порядок реакции может быть положительным или отрицательным, целым или дробным.

Большинство химических реакций состоит из нескольких стадий, называемых элементарными реакциями. Под элементарной реакцией обычно понимают единичный акт образования или разрыва химической связи, протекающий через образование переходного комплекса. Число частиц, участвующих в элементарной реакции, называют молекулярностью реакции. Элементарные реакции бывают только трех типов: мономолекулярные (A B +...), бимолекулярные (A + B D +...) и тримолекулярные (2A + B D +...). Для элементарных реакций общий порядок равен молекулярности, а порядки по веществам равны коэффициентам в уравнении реакции.

 

Влияние концентраций реагирующих веществ. Cкорость химической реакции пропорциональна произведению концентра­ций реагирующих веществ.

Для реакции (I) этот закон выразится уравнением

v = kcA cB, (1)

где сА и сВ - концентрации веществ А и В, моль/л; k - коэффициент пропорциональности, называемый константой скорости реакции. Основной закон химической кинетики часто называют законом действующих масс.

Влияние температуры. Зависимость скорости реакции от температу­ры определяется правилом Вант-Гоффа:

При повышении температуры на каждые 10о скорость большинства реакций увеличивается в 2-4 раза.

Математически эта зависимость выражается соотношением

vt 2 = vt 1 γ,

где vt 1, vt 2 - скорости реакции соответственно при начальной (t 1) и конечной (t 2) температурах, а γ - температурный коэффициент скоро­сти реакции, который показывает, во сколько раз увеличивается ско­рость реакции с повышением температуры реагирующих веществ на 10°.

Правило Вант-Гоффа является приближенным и применимо лишь для ориентировочной оценки влияния температуры на скорость реак­ции. Температура влияет на скорость химической реакции, увеличивая константу скорости.

 

 

39. Число молекул, вступающих в реакцию, определяют молекулярность реакции.

Так, если в реакцию вступает одна молекула, то такая реакция называется молекулярной реакцией. Если в реакции участвуют две молекулы (безразлично, одинаковые или нет), то такая реакция называется бимолекулярной. Встречаются также тримолекулярные реакции.

Реакции более высокой степени молекулярности крайне редки из–за малой вероятности одновременного столкновения большого числа молекул.

Поэтому большинство реакций протекают в несколько элементарных, простых стадий, в которых участвует небольшое число молекул.

Если реакция протекает последовательно через несколько гомогенных или гетерогенных элементарных стадий, то суммарная скорость всего процесса определяется самой медленной его частью, а молекулярность заменяется порядком реакции – формальным показателем при концентрации реагирующих веществ. Поэтому весь процесс в целом лучше характеризует порядок реакции.

Скорость химической реакции это изменение количества реагирующего вещества или продукта реакции за единицу времени в единице объема (для гомогенной реакции) или на единице поверхности раздела фаз (для гетерогенной реакции).

Чтобы произошла реакция, необходимо столкновение реагирующих частиц. Число столкновений растет с увеличением числа реагирующих частиц в единице объема, т.е. с увеличением концентрации веществ. при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам в уравнении реакции.

 

40. Константа скорости реакции (удельная скорость реакции) — коэффициент пропорциональности в кинетическом уравнении.

Физический смысл константы скорости реакции k следует из уравнения закона действующих масс: k численно равна скорости реакции при концентрации каждого из реагирующих веществ равной 1 моль/л.

Константа скорости реакции зависит от температуры, от природы реагирующих веществ, но не зависит от их концентрации.

Энергия активации — минимальное количество энергии, которое требуется сообщить системе, чтобы произошла реакция. Энергия активации - разность между значениями средней энергии частиц (молекул, радикалов, ионов и др.), вступающих в элементарный акт химической реакции, и средней энергии всех частиц, находящихся в реагирующей системе._

 


Дата добавления: 2015-09-30; просмотров: 45 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Статья к коллекции Киевская Русь | 1. Имя и фамилия персонажа: Луна Инверс.

mybiblioteka.su - 2015-2024 год. (0.015 сек.)