Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Анализ кариотипа человека проводят в культуре делящихся соматических и половых клеток. Наиболее часто при цитогенетических исследованиях в медицинской генетике используют культуру клеток



Анализ кариотипа человека проводят в культуре делящихся соматических и половых клеток. Наиболее часто при цитогенетических исследованиях в медицинской генетике используют культуру клеток периферической крови, прежде всего лимфоцитов, костного мозга и фибробластов. Наиболее доступны для исследований лимфоциты периферической крови, которые, в большинстве случаев и служат объектом цитогенетического анализа у человека в постнатальном периоде. Для анализа кариотипа плода могут быть использованы различные клеточные культуры; их выбор диктуется сроком беременности, в котором проводится исследование. Так, на раннем сроке (до 12 недель внутриутробного развития) анализ хромосом целесообразно проводить в клетках ворсин хориона, в то время как в более позднем сроке цитогенетическому исследованию подвергают клетки плода, выделенные из амниотической жидкости, пуповинной крови и плаценты.

Для исследования кариотипа человека достаточно получить образец периферической крови в количестве 1-2 мл. Цитогенетический анализ включает три основных этапа: 1) культивирование клеток; 2) окраску препарата; 3) микроскопический анализ препарата. Культивирование клеток проводится следующим образом. После забора образец крови помещают в питательную солевую среду с добавлением цельной сыворотки крупного рогатого скота и белка бобовых растений — фитогемагглютинина, стимулирующего процесс деления клеток.

Успех цитогенетического исследования в значительной мере определяется тем, сколько клеток в культуре будут находиться в стадии метафазы. Для увеличения количества метафазных клеток за полтора часа до окончания культивирования в культуру вводят колхицин, который разрушает клеточное веретено, приостанавливает деление клеток на стадии метафазы и увеличивает конденсацию хромосом. Обычно, продолжительность культивирования составляет 72 ч. После его окончания клетки с питательной средой центрифугируют и помещают в гипотонический раствор хлорида калия или цитрата натрия. Гипотоническая обработка приводит к разрыву ядерной оболочки и межхромосомных связей и свободному перемещению хромосом в цитоплазме. После этого производится фиксация клеток смесью метанола и уксусной кислоты в соотношении 3:1, после чего клеточную суспензию раскапывают на охлажденные влажные предметные стекла и высушивают на воздухе.



На следующем этапе цитогенетического исследования производится окраска препаратов. В зависимости от целей исследования, то есть оттого, какой именно тип перестроек необходимо выявить, можно использовать различные виды окрашивания.

Наиболее простой метод окрашивания хромосом, называемый в настоящее время сплошным или рутинным, применяют для определения количества хромосом в препарате и выявления геномных мутаций и анеуплоидий. При этой окраске используют краситель Гимзы, который равномерно прокрашивает хромосомы по всей длине, что дает возможность идентифицировать хромосомы и оценить их количество в препарате. Этот метод окраски успешно применялся до 70-х годов прошлого века и позволил выявить этиологию большинства хромосомных синдромов, характеризующихся изменением количества хромосом. В настоящее время сплошное окрашивание применяют, в основном, для выявления количественных аномалий кариотипа, а также специфического сайта ломкости при синдроме фрагильной X-хромосомы. Препарат метафазных хромосом человека, окрашенных по всей длине, представлен на рисунке.

Однако использование рутинного метода окраски не позволяет выявлять структурные перестройки хромосом. В этих случаях применяют специальные методы, так называемой, дифференциальной окраски, в результате которой хромосомы приобретают поперечную исчерченность. Расположение и толщина темных и светлых полос строго индивидуальны для каждой хромосомы, что позволяет проводить их точную идентификацию и выявлять структурные перестройки. Для объяснения возникновения различно окрашенных полос на хромосомах выдвигается несколько гипотез: различия в количественном содержании А—Т- и G—С-пар оснований, особенности строения нуклеосом, а так же асинхрониость репликации различных участков ДНК.

Наибольшее распространение получил простой и эффективный G-метод дифференциального окрашивания. В этом случае для окрашивания хромосом также используют краситель Гимзы, однако, хромосомы предварительно обрабатывают раствором трипсина. Процедура окрашивания занимает от 5 до 10 минут и приводит к появлению специфичного для каждой хромосомы рисунка поперечной исчерченности. Показано. что количество полос в метафазных и прометафазных пластинках существенно различается: в метафазных пластинках их число достигает 400, а в прометафазных - от 800 до 1000. Препарат метафазных хромосом человека, окрашенных по G-методу, представлен на рисунке.

Другие методы окраски используются реже вследствие их сложности или узкой специфичности. R-метод обусловливает сегментацию хромосом, противоположную той, которая имеет место при окраске G-методом.

С-метод дифференциальной окраски позволяет анализировать лишь некоторые районы хромосом - участки так называемого конститутивного гетерохроматина, локализованного в околоцетромерных областях длинных плеч хромосом 1, 9 и 16, в длинном плече Y-хромосомы, а также в коротких плечах акроцентрических хромосом.

Для дифференциальной окраски хромосом могут использоваться флуорохромы: акрихин, акрихин-иприт, квинакрин и другие (Q-метод окраски). По результатам дифференциальной флуоресцентной окраски идентифицируют каждую пару гомологов, а по свечению Y-хроматина определяют наличие Y-хромосомы в интерфазном ядре.

Третий этап исследования кариотипа человека заключается в световом микроскопировании фиксированных и окрашенных препаратов метафазных хромосом. Для адекватного выявления хромосомных аномалий необходимо проанализировать не менее 30 метафазных пластинок. В том случае, если предполагается мозаицизм по хромосомным аномалиям, количество анализируемых хромосом должно быть увеличено. Число клеток (n) необходимых для анализа с целью определения заданного уровня мозаицизма можно определить по формуле биноминального распределения: Р = (1 — р)n, где р — заданный уровень мозаицизма, Р - вероятность обнаружения мозаицизма. Учитывая, что в различных клетках организма количество нормальных и аномальных клонов может различаться, для выявления мозаицизма может потребоваться анализ нескольких тканей, например, клеток крови, фибробластов, половых желез.

Цитогенетический метод

Теоретическая часть. Цитологический метод основан на микроскопическом изучении хромосом в клетках человека. Цитогенетический метод широко применяется с 1956 года, когда Дж. Тио и Л. Леван установили, что в кариотипе человека 46 хромосом.

Цитогенетический метод основывается на данных о хромосомах. В 1960 году на научной конференции в Денвере была принята классификация идентифицируемых хромосом, в соответствии с которой им были даны номера, увеличивающиеся по мере уменьшения размеров хромосом. Эта классификация была уточнена на конференции в Лондоне (1963) и Чикаго (1966).

Применение цитогенетического метода позволяет изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, и, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или с нарушением структуры хромосом. Цитогенетический метод позволяет изучать процессы мутагенеза на уровне хромосом и кариотипа. Метод широко применяется в медико-генетическом консультировании для целей пренатальной диагностики хромосомных болезней.

В соматических клетках человека диплоидный набор хромосом, 2n=46, а в половых – гаплоидный n=23. При оплодотворении диплоидный набор хромосом восстанавливается.

В хромосоме выделяют короткое (р) и длинное (q) плечи. Концы обоих плеч хромосомы называют теломерами. В метафазе митоза хромосомы представлены двумя сестринскими хроматидами, соединенными центромерой. В центромере содержится вещество – кинетохор, участвующее в формировании нитей веретена при клеточном делении.

При изучении кариотипа определяют следующие морфометрические характеристики хромосом: Lа – абсолютная длина хромосомы в мкм; Lр – длина короткого плеча; Lg – длина длинного плеча. Iв – плечевой индекс, Iс – центромерный индекс, Lr – относительная длина хромосомы, Ih - процент гетерохроматиновой зоны, Is – индекс спирализации.

По значению плечевого индекса определяется форма хромосом. При Iв 1-1,9 хромосома называется равноплечей (метацентрической), 2-4,9 – слабонеравноплечей (субметацентрической), 5 и более – акроцентрической или резко неравноплечей.

Для кариотипирования подбирают метафазные пластинки в количестве не менее 30 с одинаковым индексом спирализации.

На основании различий в длине выделены 23 пары хромосом. По форме в кариотипе человека имеются метацентрические, субметацентрические и акроцентрические хромосомы. Отнесение хромосом к той или иной группе производится на основе расчета центромерного индекса. На основании размеров и комбинации плечевого и центромерного индексов хромосомы человека в соответствии с Международной Денверской классификацией (1960) сгруппированы в 7 групп, обохзначаемых буквами английского алфавита: A, B, C, D, E, F, G.

 

Таблица 1 Международная денверская классификация хромосом человека (1960г.)

Группа Номер пары хромосом Центромерный индекс Размеры и форма хромосом

A 1 0,48-0,49 Самые крупные, метацентрики

2 0,38-0,40 Самые крупные, метацентрики

3 0,45-0,46 Самые крупные, метацентрики

B 4,5 0,24-0,30 Крупные, субметацентрики

C 6-12

Х - хромосома 0,28-0,43 Среднего размера, метацентрики и субметацентрики. Группа включает 7 аутосом и Х-хромосому

D 13, 14, 15 до 0,15 Среднего размера, акроцентрики, характерна межиндивидуальная вариабельность и наличие спутников на коротких плечах

E 16-18 0,26-0,40 Относительно короткие метацентрики и субметацентрики

F 19,20 0,36-0,46 Небольшие метацентрики

G 21,22

Y - хромосома 0,13-0,33 Небольшие акроцентрики. Для аутосом характерно наличие спутников не коротких плечах

 

В настоящее время для идентификации хромосом в соответствии с номенклатурой ISCN-1995 (парижская номенклатура) все чаще используется дифференциальное окрашивание, которое на хромосомах дает полосы поперечной исчерченности, благодаря которым можно более точно идентифицировать пары гомологов.

Анализ кариотипа проводят в культуре делящихся соматических и половых клеток. Наиболее часто используют культуру клеток переферической крови, прежде всего лимфоцитов, костного мозга и фибробластов. Для анализа кариотипа плода используют различные клеточные культуры; их выбор определяется сроком беременности (до 12 недель – используют клетки ворсин хориона(Сосуды плода, разветвляясь в плаценте до мельчайших капилляров, образуют (вместе с поддерживающими тканями) ворсины хориона, которые погружены в лакуны, наполненные материнской кровью), в более поздние сроки – клетки плода, выделенные из амниотической жидкости, пуповинной крови и плаценты).

Цитологический анализ включает три основынх этапа:

1) Культивирование клеток;

2) Окраска препарата;

3) Микроскопический анализ препарата.

 

Культивирование.Образец помещают в питательную солевую среду с добавлением цельной сыворотки крупного рогатого скота и белка бобовых растений – фитогемагглютинина, стимулирующего процесс деления клеток. Для увеличения числа метафазных клеток (кариотип изучают в метафазных клетках, где хромосомы достигают наибольшей спирализации и наиболее четко проявляется их форма) за 1,5 часа до окончания культивирования в культуру вводят колхицин (C22H25NO6), который разрушает клеточное веретено, приостанавливает деление клеток на стадии метафазы и увеличивает конденсацию (спирализацию) хромосом. Обычно культивирование составляет 72 часа. После этого клетки отделяют центрифугированием и помещением в гипотонический раствор хлорида калия или цитрата натрия. В гипотонической среде происходит разрыв ядерной оболочки и межхромосомных связей и хромосомы свободно перемещаются в цитоплазму. Затем производится фиксация клеток в фиксаторе Карнуа (3:1): 3 части составляет 96% этиловый спирт ректификат, 1 часть ледяная уксусная кислота.

После фиксации клеточную суспензию раскладывают на обезжиренные, охлажденные влажные предметные стекла и высушивают на воздухе.

 

Окраска. Наиболее простой метод окраски хромосом – это сплошная по Гимза. Сплошная окраска применяется для определения количества хромосом, выявления геномных мутаций и анеуплоидии.

Для выявления структурной перестройки хромосом (хромосомные мутации) используют дифференциальную окраску, в результате которой хромосомы приобретают поперечную исчерченность. Расположение и длина темных и светлых полос строго индивидуальна для каждой хромосомы, благодаря этому можно провести более точную идентификацию гомологичных пар и выявить перестройки хромосом.

Наиболее эффективен G-метод дифференциального окрашивания, для этого можно использовать краситель Гимзы, после предварительной обработки хромосом раствором трипсина. При таком окрашивании количество полос на хромосомах в метафазных пластинках достигает 400. Для дифокраски используют также R-метод, и Q-метод. После окраски объект заключают в Канадский бальзам, препарат становится постоянным и может храниться десятки лет.

 

 

Микроскопирование препаратов метафазных хромосом. Для описания кариотипа человека используется универсальная схема и специальные символы. Например, запись 46,хх – обозначает нормальный кариотип женщины, а 46, ху – нормальный кариотип мужчины.

В ряде случаев при изучении хромосом обнаруживают полиморфизм, который наиболее характерен для акроцентрических хромосом и, как правило, отражает вариабельность размеров гетерохроматиновых сегментов, наличие спутников, спутничных нитей в области коротких плеч и их величину. В таблице 2 приведены некоторые из них.

 

Таблица 2 Обозначение полиморфизма хромосом человека

Символы кариотипа Тип хромосомной перестройки

46,ХХ,9qh+ Увеличение размера гетерохроматинового участка в длинном плече хромосомы 9 женщины

46,XY,Yqh- Уменьшение размера гетерохроматинового района на длинном плече Y хромосомы у мужчины

46, XX,22ps+ Увеличение размера спутников на коротком плече хромосомы 22 у женщины

46,XY,21pstk Увеличение длины спутничных нитей на коротком плече хромосомы 21 у мужчины

46,XX,fra(16)(q21.3) Ломкий сайт в сегменте 21 длинного плеча хромосомы 16

46,XX,15pss Появление двойных спутников на коротком плече хромосомы 15 у женщины

46,XX,21ps+ Увеличение размера спутников на коротком плече хромосомы 21 у женщины

 

Установлено, что наличие нормального полиморфизма хромосом увеличивает риск рождения ребенка с хромосомными аномалиями.

Среди супружеских пар, у которых наблюдалось рождение детей с пороками развития, а также страдающих бесплодием и привычным невынашиванием беременности, чаще выявляется носительство хромосом с крупными гетерохроматиновыми блоками. Преобладание лиц с увеличенными гетерохроматиновыми сегментами в акроцентрических хромосомах, а также в хромосомах 1, 9 и 16 отмечено в группе детей с множественными врожденными пороками развития.

Следуя рекомендациям IV Международного конгресса по генетике человека в Париже (1971), при описании добавочных хромосом их номер помещают после общего числа аутосом и половых хромосом со знаком «плюс» или «минус» перед номером вовлеченной аутосомы. Например, запись (формула) 47,ХХ+21 обозначает кариотип женщины с трисомией по 21 паре хромосом. Напротив, кариотип мужчины с экстрахромосомой Х изображают как 47,ХХY. Знак «плюс» или «минус» ставят после символа хромосомы, чтобы указать удлинение или укорочение ее плеча. Буква q символизирует длинное плечо, а p – короткое. Например, запись 46,ХY,1q+ указывает на увеличение длинного плеча хромосомы 1. Формула 47,ХY+14р+ - кариотип мужчины с 47 хромосомами, включая и дополнительную хромосому 14 с удлинением ее короткого плеча.

Сокращение – def (дефишенс), dup (дупликация), r (кольцо, возникающее после воссоединения двух разрывов в хромосоме), inv (инверсия) и t (транслокация) – обозначают аберрации хромосом. Номера хромосомы или хромосом помещают после сокращений в скобках. Например, запись 46,ХХ,r(18) означает кариотип женщины с 46 хромосомами, включая r-хромосому 18. Формула 46,Х,inv(Хq) – кариотип женщины с 46 хромосомами, включая одну нормальную Х-хромосому и изохромосому Х (с двумя генетически идентичными длинными плечами). Банды помечаются числами по мере удаления от центромеры вдоль короткого (р) и длинного (q) плечей хромосомы.

С помощью цитогенетического метода выявлены хромосомные мутации типа реципрокных транслокаций, робертсоновских транслокаций и делеций. Так, транслокация 21-й хромосомы на другую 21, 22, 13, 14 или 15 вызывает синдром Дауна. Так, делеция короткого плеча Х-хромосомы (трактуется как моносомия по Х-хромосоме) укорочение короткого плеча 21-й хромосомы (филадельфийская хромосома), делеция короткого плеча хромосомы 5-й пары (синдром «кошачьего крика»), делеция длинного и короткого плеча 18-й хромосомы (нарушение строения лица, скелета, умственная отсталость, гипотрофия, гипотония и многие другие аномалии). В результате двух концевых нехваток образуются кольцевые хромосомы. При кольцевой 5-й хромосоме развивается синдром «кошачьего крика», в х-хромосоме – клиническая картина близка синдрому Шерешевского-Тернера. Среди геномных мутаций наиболее часто встречается синдром Дауна (трисомия по 21 паре). Трисомия по 13 хромосоме вызывает синдром Патау, по 18 хромосоме – синдром Эдвардса. Среди анеуплоидных синдромов по половым хромосомам (ХО) – синдром Шершевского-Тернера. Полисомия по Х хромосоме называется синдром Клайнфельтера (ХХY), встречаются отклонения по числу половых хромосом (ХХХY, XYY и др.) и синдром ТриплоХ.

 

Метод определения полового хроматина. Это экспресс метод, позволяющий выявить изменения числа половых хромосом в неделящихся клетках слизистой оболочки щеки. Половой хроматин, или тельце Барра, образуется одной из хромосом женского организма. Оно выглядит как интенсивно окрашенная глыбка, расположенная вблизи ядерной оболочки. При увеличении количества Х-хромосом в кариотипе организма образуются тельца Барра в количестве на единицу меньше числа Х-хромосом. При моносомии по Х-хромосоме тельце Барра отсутствует. Y-хромосома в мужском кариотипе обнаруживается по более интенсивной люминисценции при обработке акрихинипритом и излучении в ультрафиолетовом свете.

Благодаря культивированию клеток человека in vitro можно быстро получить достаточно большой материал для приготовления препаратов. Для кариотипирования обычно используют кратковременную культуру лейкоцитов периферической крови.


Дата добавления: 2015-09-29; просмотров: 144 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Збірник наукових праць, частина 2, 2009 36 страница | 

mybiblioteka.su - 2015-2024 год. (0.014 сек.)