Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Data Mining (рус. добыча данных, интеллектуальный анализ данных, глубинный анализ данных) — собирательное название, используемое для обозначения совокупности методов обнаружения в данных ранее



Data Mining (рус. добыча данных, интеллектуальный анализ данных, глубинный анализ данных) — собирательное название, используемое для обозначения совокупности методов обнаружения в данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Термин введён Григорием Пятецким-Шапиро в 1989 году[1][2][3].

Английское словосочетание «Data Mining» пока не имеет устоявшегося перевода на русский язык. При передаче на русском языке используются следующие словосочетания[4]: просев информации, добыча данных, извлечение данных, а, также, интеллектуальный анализ данных [5][6][7]. Более полным и точным является словосочетание «обнаружение знаний в базах данных» (англ. knowledge discovering in databases, KDD).

Основу методов Data Mining составляют всевозможные методы классификации, моделирования и прогнозирования, основанные на применении деревьев решений, искусственных нейронных сетей, генетических алгоритмов, эволюционного программирования, ассоциативной памяти, нечёткой логики. К методам Data Mining нередко относят статистические методы (дескриптивный анализ, корреляционный и регрессионный анализ, факторный анализ, дисперсионный анализ, компонентный анализ, дискриминантный анализ, анализ временных рядов). Такие методы, однако, предполагают некоторые априорные представления об анализируемых данных, что несколько расходится с целями Data Mining (обнаружение ранее неизвестных нетривиальных и практически полезных знаний).

Одно из важнейших назначений методов Data Mining состоит в наглядном представлении результатов вычислений, что позволяет использовать инструментарий Data Mining людьми, не имеющих специальной математической подготовки. В то же время, применение статистических методов анализа данных требует хорошего владения теорией вероятностей иматематической статистикой.

Содержание

[убрать]

· 1 Введение

o 1.1 Исторический экскурс

o 1.2 Постановка задачи

§ 1.2.1 Data mining и базы данных

§ 1.2.2 Data mining и искусственный интеллект

· 2 Задачи

· 3 Алгоритмы обучения

· 4 Этапы обучения

· 5 Подготовка данных

· 6 См. также

· 7 Примечания

· 8 Литература

· 9 Ссылки

[править]Введение

Методы Data Mining (или, что то же самое, Knowledge Discovery In Data, сокращённо, KDD) лежат на стыке баз данных, статистики и искусственного интеллекта[8].



[править] Исторический экскурс

Область Data Mining началась с семинара (англ. workshop), проведёного Григорием Пятецким-Шапиро в 1989 году.[1]

Ранее, работая в компании GTE Labs, Григорий Пятецкий-Шапиро заинтересовался вопросом: можно ли автоматически находить определённые правила, чтобы ускорить некоторые запросы к крупным базам данных. Тогда же было предложено два термина — Data Mining («добыча данных»[9]) и Knowledge Discovery In Data (который следует переводить как «открытие знаний в базах данных»).

В 1993 году вышла первая рассылка «Knowledge Discovery Nuggets», а в 1994 году был создан один из первых сайтов по Data Mining.

[править] Постановка задачи

Первоначально задача ставится следующим образом:

· имеется достаточно крупная база данных;

· предполагается, что в базе данных находятся некие «скрытые знания».

Необходимо разработать методы обнаружения знаний, скрытых в больших объёмах исходных «сырых» данных.

Что означает «скрытые знания»? Это должны быть обязательно знания:

· ранее не известные — то есть такие знания, которые должны быть новыми (а не подтверждающими какие-то ранее полученные сведения);

· нетривиальные — то есть такие, которые нельзя просто так увидеть (при непосредственном визуальном анализе данных или при вычислении простых статистических характеристик);

· практически полезные — то есть такие знания, которые представляют ценность для исследователя или потребителя;

· доступные для интерпретации — то есть такие знания, которые легко представить в наглядной для пользователя форме и легко объяснить в терминах предметной области.

Эти требования во многом определяют суть методов Data mining и то, в каком виде и в каком соотношении в технологии Data mining используются системы управления базами данных, статистические методы анализа и методы искусственного интеллекта.

 

[править] Data mining и базы данных

Методы Data mining имеет смысл применять только для достаточно больших баз данных. В каждой конкретной области исследований существует свой критерий «великости» базы данных.

Развитие технологий баз данных сначала привело к созданию специализированного языка — языка запросов к базам данных. Для реляционных баз данных — это язык SQL, который предоставил широкие возможности для создания, изменения и извлечения хранимых данных. Затем возникла необходимость в получении аналитической информации (например, информации о деятельности предприятия за определённый период), и тут оказалось, что традиционные реляционные базы данных, хорошо приспособленные, например, для ведения оперативного учёта (на предприятии), плохо приспособлены для проведения анализа. это привело, в свою очередь, к созданию т. н. «хранилищ данных», сама структура которых наилучшим способом соответствует проведению всестороннего математического анализа.

[править] Data mining и искусственный интеллект

Знания, добываемые методами Data mining принято представлять в виде моделей. В качестве таких моделей выступают:

· ассоциативные правила;

· деревья решений;

· кластеры;

· математические функции.

Методы построения таких моделей принято относить к области искусственного интеллекта.

[править]Задачи

Задачи, решаемые методами Data Mining, принято разделять на описательные (англ. descriptive) и предсказательные (англ. predictive).

В описательных задачах самое главное — это дать наглядное описание имеющихся скрытых закономерностей, в то время как в предсказательных задачах на первом плане стоит вопрос о предсказании для тех случаев, для которых данных ещё нет.

К описательным задачам относятся:

· поиск ассоциативных правил или паттернов (образцов);

· группировка объектов, кластерный анализ;

· построение регрессионной модели.

К предсказательным задачам относятся:

· классификация объектов (для заранее заданных классов);

· регрессионный анализ, анализ временны́х рядов.

[править]Алгоритмы обучения

Для задач классификации характерно «обучение с учителем», при котором построение (обучение) модели производится по выборке, содержащей входные и выходные векторы.

Для задач кластеризации и ассоциации применяется «обучение без учителя», при котором построение модели производится по выборке, в которой нет выходного параметра. Значение выходного параметра («относится к кластеру …», «похож на вектор …») подбирается автоматически в процессе обучения.

Для задач сокращения описания характерно отсутствие разделения на входные и выходные векторы. Начиная с классических работ К. Пирсона по методу главных компонент, основное внимание уделяется аппроксимации данных.

[править]Этапы обучения

Выделяется[ где? ] типичный ряд этапов решения задач методами Data Mining:

1. Формирование гипотезы;

2. Сбор данных;

3. Подготовка данных (фильтрация);

4. Выбор модели;

5. Подбор параметров модели и алгоритма обучения;

6. Обучение модели (автоматический поиск остальных параметров модели);

7. Анализ качества обучения, если неудовлетворительный переход на п. 5 или п. 4;

8. Анализ выявленных закономерностей, если неудовлетворительный переход на п. 1, 4 или 5.

[править]Подготовка данных

Перед использованием алгоритмов Data Mining необходимо произвести подготовку набора анализируемых данных. Так как ИАД может обнаружить только присутствующие в данных закономерности, исходные данные с одной стороны должны иметь достаточный объем, чтобы эти закономерности в них присутствовали, а с другой — быть достаточно компактными, чтобы анализ занял приемлемое время. Чаще всего в качестве исходных данных выступают хранилища или витрины данных. Подготовка необходима для анализа многомерных данных до кластеризации или интеллектуального анализа данных.

Далее данные очищаются. Очистка удаляет выборки с шумами и пропущенными данными.

Очищенные данные сводятся к наборам признаков (или векторам, если алгоритм может работать только с векторами фиксированной размерности), один набор признаков на наблюдение. Набор признаков формируется в соответствии с гипотезами о том, какие признаки сырых данных имеют высокую прогнозную силу в расчете на требуемую вычислительную мощность для обработки. Например, черно-белое изображение лица размером 100×100 пикселей содержит 10 тыс. бит сырых данных. Они могут быть преобразованы в вектор признаков путем обнаружения в изображении глаз и рта. В итоге происходит уменьшение объема данных с 10 тыс. бит до списка кодов положения, значительно уменьшая объем анализируемых данных, а значит и время анализа.

Ряд алгоритмов умеют обрабатывать пропущенные данные, имеющие прогностическую силу (например, отсутствие у клиента покупок определенного вида). Скажем, при использовании метода ассоциативных правил (англ.)русск. обрабатываются не векторы признаков, а наборы переменной размерности.

Выбор целевой функции будет зависеть от того, что является целью анализа; выбор «правильной» функции имеет основополагающее значение для успешного интеллектуального анализа данных.

Наблюдения делятся на две категории — обучающий набор и тестовый набор. Обучающий набор используется для «обучения» алгоритма Data Mining, а тестовый набор — для проверки найденных закономерностей.

 


Дата добавления: 2015-09-29; просмотров: 2016 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Data Mining разработчик (стажер) | My name is Andrew, and I am nine.

mybiblioteka.su - 2015-2024 год. (0.011 сек.)