Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Перевод с английского: В. И. Кандрор, Э. А. Антух, Т. Г. Горлина. 29 страница



22. Kwan M, et al. The nature of androgen action of male sexuality: A combined laboratory and self report study in hypogonadal men. J Clin Endocrinol Metab 57:557, 1983.

23. Lue T. Organic impotence. In CW Bardin (ed), Current Therapy in Endocrinology and Metabolism. Philadelphia: Decker, 1991. Pp. 269.

24. Marcelli M, et al. Androgen resistance associated with a mutation of the androgen receptor at amino acid 772 (Arg Cys) results from a combination of decreased messenger ribonucleic acid levels and impairment of receptor junction. J Clin Endocrinol Metab 73:318, 1991.

25. Paice JA, et al. Altered sexual function and decreased testosterone in patients receiving intraspinal opioids. J Pain Symptom Manage 9:126, 1994.

26. Pajarinen JT, Karhunen PJ. Spermatogenic arrest and 'Sertoli cell-only' syndrome—common alcohol-induced disorders of the human testis. Int J Androl 17:292, 1994.

27. Parvinen M. Regulation of the seminiferous epithelium. Endocr Rev 3:404, 1982.

28. Paulsen CA, et al. Klinefelter's syndrome and its variants: A hormonal and chromosomal study. Recent Prog Horm Res 24:321, 1968.

29. Rivier C, et al. Studies of the inhibin family of hormones: a review. Horm Res 28:104, 1987.

30. Rommerts FFG, Focko FG. Testosterone: An overview of biosynthesis, transport, metabolism and action. In E Nieschlag, HM Behre (eds), Testosterone Action Deficiency Substitution. Berlin: Springer, 1990. P. 1.

31. Sherins RJ. Evaluation and management of men with hypogonadotropic hypogonadism. In CR Garcia et al (eds), Current Therapy of Infertility. St. Louis: Mosby, 1982. P. 10.

32. Sherins RJ, DeVita VT. Effect of drug treatment for lymphoma on male reproductive capacity: Studies of men in remission after therapy. Ann Intern Med 79:216, 1973.

33. Sigman M, Howards SS. Male infertility. In PC Walsh et al (eds) Campbell's Urology (6th ed). Philadelphia: Saunders, 1992.

34. Swerdloff RS, et al. Evaluation of the infertile couple. Endocrinol Metab Clin North Am 17:301, 1988.

35. Swerdloff RS, et al. Endocrine evaluation of the infertile male. In L Lipschultz, S Howards (eds), Infertility in the Male (2nd ed). St. Louis: Mosby, 1991. Pp. 211.

36. Swerdloff RS, Wang C. Androgens and aging in men. West J Med. In press.

37. Vermullen A. Androgens in the aging male. J Clin Endocrinol Metab 73:221, 1991.

38. Wang C, Swerdloff RS. Androgens. In CM Smith, AM Raynard (eds), Textbook of Pharmacology Philadelphia: Saunders, 1991. Pp. 683.

39. Wang C, Swerdloff RS. Evaluation of testicular function. In DM de Kretser (ed), Bailliere's Clinical Endocrinology and Metabolism. (Vol 6) London: Bailliere Tindell, 1992.

40. Wiener JS, et al. Molecular biology and function of the androgen receptor in genital development. J Urol 157:1377, 1997.

41. Williams C, et al. Effect of synthetic gonadotropin-releasing hormone (GnRH) in a patient with the "fertile eunuch" syndrome. J Clin Endocrinol Metab 41:176, 1975.

42. Wilson JD, et alv. The pathogenesis of gynecomastia. Adv Intern Med 25:1, 1980.

43. World Health Organization. Laboratory Manual for the Examination of Semen and Sperm-Cervical Mucus Interaction (3rd ed) Cambridge: Cambridge University Press, 1992.


V. Нарушения минерального обмена

Глава 24. Нарушения обмена кальция и фосфора у взрослых

А. Брикман

Регуляция обмена кальция и фосфора

Главные регуляторы обмена кальция и фосфора — ПТГ, витамин D и кальцитонин. Мишени этих гормонов — костная ткань, почки и тонкая кишка. В регуляции метаболизма кальция и фосфора участвуют и другие факторы: ПТГ-подобные пептиды, цитокины (интерлейкины-1, -2, -6; трансформирующие факторы роста альфа и бета; факторы некроза опухолей альфа и бета), тромбоцитарный фактор роста, ИФР-I, ИФР-II, а также ИФР-связывающие белки.



I. ПТГ

А. Синтез и структура. ПТГ синтезируется в паращитовидных железах в виде предшественника — препроПТГ, содержащего 115 аминокислот. В ходе процессинга препроПТГ превращается в проПТГ (90 аминокислот) и затем в зрелый секретируемый ПТГ. Зрелый ПТГ содержит 84 аминокислоты (ПТГ1—84). В печени, почках, костях и самих паращитовидных железах ПТГ1—84 метаболизируется с образованием C-концевого, N-концевого и срединного фрагментов. Гормональной активностью обладают ПТГ1—84 и N-концевой фрагмент (содержащий, по крайней мере, первые 26 аминокислот). Именно эта часть молекулы ПТГ отвечает за связывание с рецепторами на клетках-мишенях. Роль C-концевого фрагмента точно не установлена. При определении содержания ПТГ в сыворотке нужно учитывать следующее:

1. ПТГ1—84 метаболизируется в клетках-мишенях и потому исчезает из сыворотки быстрее, чем C-концевой фрагмент.

2. N-концевой фрагмент ПТГ в свободном виде в сыворотке не обнаруживается.

3. C-концевой фрагмент фильтруется в почечных клубочках и разрушается в эпителии проксимальных канальцев, поэтому его уровень в сыворотке повышается при почечной недостаточности.

4. ПТГ1—84 не фильтруется в почечных клубочках, поэтому его определение особенно информативно при почечной недостаточности.

Ранее для определения содержания ПТГ в сыворотке методом РИА использовали антитела к C-концевому фрагменту ПТГ. При этом нередко получали ложноположительные результаты: высокий уровень C-концевого фрагмента маскировал дефицит ПТГ1—84. В последнее время используют двойной иммунорадиометрический метод, который позволяет точно измерить концентрацию ПТГ1—84 (см. гл. 1, п. II.В.1.б).

Б. Регуляция секреции. Скорость секреции ПТГ зависит прежде всего от концентрации Ca2+ (свободного или ионизированного кальция) в сыворотке. На клетках паращитовидных желез имеются рецепторы Ca2+, сопряженные с G-белками. Даже незначительное снижение концентрации кальция быстро стимулирует секрецию ПТГ. На секрецию влияют также изменения концентрации магния в крови и изменения запасов магния в тканях: повышение концентрации Mg2+ подавляет секрецию ПТГ. Транскрипция гена ПТГ и синтез препроПТГ контролируются 1,25(OH)2D3.

В. Физиологическая роль. Главная функция ПТГ — поддержание постоянства концентрации кальция в крови. ПТГ стимулирует резорбцию костной ткани и тем самым усиливает поступление кальция в кровь. ПТГ снижает экскрецию кальция в почках и усиливает всасывание кальция в тонкой кишке.

1. Действие ПТГ на костную ткань. ПТГ — один из главных регуляторов перестройки кости. Рецепторы ПТГ присутствуют на остеобластах и остеоцитах, но отсутствуют на остеокластах. Тем не менее при повышении уровня ПТГ происходит активация остеокластов и усиливается резорбция костной ткани. Этот эффект ПТГ опосредуется остеобластами: под влиянием ПТГ они начинают усиленно секретировать ИФР-I и цитокины (например, интерлейкин-1 и гранулоцитарно-макрофагальный колониестимулирующий фактор). Эти вещества, в свою очередь, активируют остеокласты. Возрастание концентрации кальция в сыворотке наблюдается уже через 30—60 мин после усиления секреции ПТГ. При постоянно повышенном уровне ПТГ (при гиперпаратиреозе) резорбция костной ткани преобладает над ее образованием, что приводит к остеопении. Предполагают, что усиленная резорбция костной ткани при гиперпаратиреозе обусловлена не только секрецией факторов роста и цитокинов, но и ускоренной пролиферацией клеток — предшественников остеокластов (эти клетки несут рецепторы ПТГ). ПТГ стимулирует продукцию компонентов органического матрикса остеобластами. Поэтому при кратковременном периодическом введении ПТГ (в течение нескольких дней) проявляется его анаболический эффект: образование костной ткани преобладает над резорбцией.

2. Действие ПТГ на почки. ПТГ стимулирует реабсорбцию кальция в дистальных извитых канальцах и тем самым снижает экскрецию кальция с мочой. ПТГ подавляет канальцевую реабсорбцию фосфата и регулирует канальцевый транспорт бикарбоната и магния. Кроме того, ПТГ стимулирует синтез 1,25(OH)2D3 из 25(OH)D3 в проксимальных извитых канальцах. 1,25(OH)2D3 усиливает всасывание кальция в тонкой кишке.

3. Действие ПТГ на другие органы. Рецепторы ПТГ обнаружены не только в костной ткани и почках, но и во многих других тканях и органах. Это надо учитывать при оценке эффектов ПТГ.

II. Витамин D

Под этим названием объединяют несколько жирорастворимых веществ, в том числе — 1,25(OH)2D3, холекальциферол и эргокальциферол.1,25(OH)2D3(1,25-дигидроксивитамин D3, кальцитриол) образуется из холекальциферола (витамина D3) или эргокальциферола (витамина D2). Холекальциферол синтезируется в организме человека и поступает в него с пищей, а эргокальциферол поступает только с пищей.

А. Холекальциферол и эргокальциферол

1. Предшественник холекальциферола — превитамин D3 — синтезируется в эпидермисе из провитамина D3 (7-дегидрохолестерина) под действием ультрафиолетового облучения. Превитамин D3 превращается в холекальциферол путем термической изомеризации (при температуре тела). В эпидермисе холекальциферол связывается с витамин-D-связывающим белком и в таком виде поступает в кровь и переносится в печень. Витамин-D-связывающий белок транспортирует и другие производные холекальциферола и эргокальциферола, в том числе 1,25(OH)2D3. Холекальциферол содержится во многих продуктах. Его особенно много в рыбьем жире, печени млекопитающих, птиц и рыб, а также в яичном желтке.

2. Эргокальциферол образуется в клетках растений из эргостерола. Основные источники эргокальциферола — хлеб и молоко. Эргокальциферол, всосавшийся в кишечнике, переносится в печень витамин-D-связывающим белком.

3. Холекальциферол и эргокальциферол входят в состав многих витаминных препаратов. Их также добавляют к пищевым продуктам, в частности — к молоку и крупам.

4. С диагностическими целями обычно определяют суммарное содержание холекальциферола и эргокальциферола и их производных в сыворотке, но можно измерять концентрации каждого вещества по отдельности. Суммарная концентрация холекальциферола и эргокальциферола в сыворотке обычно составляет 1—2 нг/мл.

5. Холекальциферол и эргокальциферол гормонально-неактивны.

Б. 25(OH)D3. В печени холекальциферол и эргокальциферол превращаются в 25(OH)D3 (25-гидроксивитамин D3,кальцидиол) путем 25-гидроксилирования.25(OH)D3 — это основной циркулирующий метаболит холекальциферола и эргокальциферола.Поэтому по концентрации 25(OH)D3 можно судить о содержании в организме всех форм витамина D. В норме концентрация 25(OH)D3 в сыворотке составляет 15—60 нг/мл. Надо учитывать, что уровень 25(OH)D3максимален летом и минимален зимой и ранней весной. Гормональная активность 25(OH)D3в 10—100 раз ниже активности 1,25(OH)2D3.

В. 1,25(OH)2D3. Образовавшийся в печени 25(OH)D3 в комплексе свитамин-D-связывающим белком поступает в кровь и переносится к почкам. В клетках проксимальных извитых канальцев 25(OH)D3 подвергается 1- или 24-гидроксилированию. В результате образуются гормонально-активная форма витамина D — 1,25(OH)2D3 (кальцитриол) либо гормонально-неактивная форма — 24,25(OH)2D3 (24,25-дигидроксивитамин D3). Обе реакции катализируются митохондриальным ферментом 1альфа-гидроксилазой.

1. Регуляция синтеза. Скорость образования 1,25(OH)2D3 зависит от количества и состава пищи и от сывороточной концентрации кальция, фосфата, ПТГ и, возможно, других гормонов — кальцитонина, эстрогенов, СТГ, инсулина. ПТГ непосредственно стимулирует синтез 1,25(OH)2D3, активируя 1альфа-гидроксилазу. Синтез 1,25(OH)2D3 усиливается при снижении внутри- и внеклеточной концентрации кальция и фосфора. Изменения концентрации кальция и фосфора влияют на синтез 1,25(OH)2D3 опосредованно, через ПТГ: при гипокальциемии и гипофосфатемии секреция ПТГ усиливается, при гиперкальциемии и гиперфосфатемии — подавляется.

2. Физиологическая роль. Как и ПТГ, 1,25(OH)2D3 регулирует перестройку костной ткани. 1,25(OH)2D3 — это главный стимулятор всасывания кальция в кишечнике. Благодаря действию 1,25(OH)2D3 концентрация Ca2+ во внеклеточной жидкости поддерживается на уровне, необходимом для минерализации органического матрикса костной ткани. При дефиците 1,25(OH)2D3 нарушается образование аморфного фосфата кальция и кристаллов гидроксиапатита в органическом матриксе, что приводит к рахиту или остеомаляции. Недавно было установлено, что 1,25(OH)2D3 усиливает резорбцию костной ткани. В опытах на культурах клеток паращитовидных желез показали, что 1,25(OH)2D3 подавляет секрецию ПТГ.

3. Роль 24,25(OH)2D3 окончательно не выяснена. Считается, что образование 24,25(OH)2D3 — это главный способ катаболизма и экскреции производных витамина D, поскольку 24,25(OH)2D3 превращается в водорастворимую кальцитроевую кислоту. Вероятно также, что при нарушении синтеза 1,25(OH)2D3 (т. е. при нарушении 1-гидроксилирования) происходит «переключение» метаболизма 25(OH)D3: он превращается преимущественно в 24,25(OH)2D3, а не в 1,25(OH)2D3. Кроме того, показано, что 24,25(OH)2D3 участвует в перестройке кости.

Г. Рецепторы 1,25(OH)2D3, 25(OH)D3 и 24,25(OH)2D3 обнаружены не только в тонкой кишке и костях, но и в почках, поджелудочной железе, скелетных мышцах, гладких мышцах сосудов, клетках костного мозга, лимфоцитах. По-видимому, роль метаболитов витамина D не ограничивается регуляцией уровня кальция во внеклеточной жидкости.

III. Кальцитонин

А. Синтез и секреция. Этот пептид, состоящий из 32 аминокислот, синтезируется в парафолликулярных C-клетках щитовидной железы. Секреция кальцитонина усиливается при повышении концентрации кальция в крови и регулируется гастроэнтеропанкреатическими гормонами, в частности гастрином.

Б. Физиологическая роль

1. Кальцитонин — антагонист ПТГ. Кальцитонин тормозит резорбцию костной ткани, снижая активность остеокластов. Кроме того, кальцитонин стимулирует остеобласты, способствуя образованию костной ткани.

2. Кальцитонин подавляет канальцевую реабсорбцию кальция в почках и тем самым усиливает его экскрецию.

3. Кальцитонин тормозит всасывание кальция в тонкой кишке. Это свойство кальцитонина используется для лечения тяжелой гиперкальциемии и гиперкальциемических кризов.

4. Скорость секреции кальцитонина у женщин сильно зависит от уровня эстрогенов. При дефиците эстрогенов, обусловленном менопаузой или заболеванием яичников, секреция кальцитонина снижается, что способствует ускоренной резорбции костной ткани и приводит к остеопорозу.

В. Диагностическое значение. Уровень кальцитонина резко повышается при медуллярном раке щитовидной железы. Для оценки скорости роста опухоли и метастазов определяют базальный и стимулированный пентагастрином и кальцием уровень кальцитонина. Уровень кальцитонина возрастает и при раке легкого, толстой кишки, молочной железы, поджелудочной железы и желудка. Почечная недостаточность или желудочно-кишечное кровотечение также могут сопровождаться повышением уровня кальцитонина.

IV. ПТГ-подобные пептиды

А. Структура. Эти пептиды, в отличие от ПТГ, содержат не менее 130 аминокислот. Разные ПТГ-подобные пептиды образуются путем альтернативного сплайсинга. Их N-концевые фрагменты (первые 30 аминокислот) идентичны N-концевому фрагменту ПТГ. Ген, кодирующий ПТГ-подобные пептиды, находится на 12-й хромосоме, тогда как ген ПТГ — на 11-й хромосоме. Полагают, что эти гены имеют общее происхождение. Сходство гормональной активности ПТГ и ПТГ-подобных пептидов объясняют идентичностью их N-концевых фрагментов. Различия ПТГ и ПТГ-подобных пептидов обусловлены, по-видимому, размерами C-концевых фрагментов: у ПТГ-подобных пептидов они значительно больше, чем у ПТГ. Специфические рецепторы ПТГ-подобных пептидов не обнаружены; они связываются с рецепторами ПТГ.

Б. Физиологическая роль

1. Роль ПТГ-подобных пептидов в минеральном обмене до конца не выяснена. Поскольку ПТГ-подобные пептиды в большом количестве содержатся в грудном молоке, считают, что они участвуют в метаболизме кальция и фосфора в молочных железах.

2. ПТГ-подобные пептиды регулируют минеральный обмен в плаценте и у плода. Недавно показали, что уровень ПТГ-подобных пептидов в сыворотке значительно повышен при синдроме Вильямса (идиопатической гиперкальциемии новорожденных). Предполагают, что ПТГ-подобные пептиды участвуют в патогенезе этого синдрома.

3. ПТГ-подобные пептиды обнаружены во многих тканях. Высокая концентрация ПТГ-подобных пептидов в различных гладкомышечных клетках свидетельствует об их участии в регуляции мышечного сокращения.

4. ПТГ-подобные пептиды выявляются в сыворотке у 60—80% больных с паранеопластической гиперкальциемией (см. гл. 24, п. IX.Г).

Гиперкальциемия

V. Общие сведения

А. Причины гиперкальциемии многообразны (см. табл. 24.1), но тщательно собранный анамнез и несколько простых лабораторных проб позволяют значительно сократить список возможных причин. Чаще всего гиперкальциемия обусловлена гиперпаратиреозом, злокачественными новообразованиями, гранулематозами, лекарственными средствами. Разумно классифицировать причины гиперкальциемии в соответствии с механизмами ее патогенеза:

1. Усиленное вымывание кальция из костной ткани.

2. Усиленное всасывание кальция в кишечнике.

3. Пониженная экскреция кальция в почках.

4. Пониженное поглощение кальция костной тканью.

5. Сочетание перечисленных причин.

В некоторых случаях причину гиперкальциемии установить не удается.

Б. Клинические проявления гиперкальциемии зависят от ее причины, тяжести, длительности и скорости развития, а также от возраста больного и сопутствующих заболеваний. Молодые легко переносят значительную гиперкальциемию, если она развивается постепенно, и очень тяжело переносят легкую или умеренную гиперкальциемию, если она возникает остро. Пожилые чувствительны даже к легкой гиперкальциемии. Клиническая картина при гиперкальциемии определяется поражениями ЦНС, сердечно-сосудистой системы, почек и ЖКТ.

1. ЦНС: слабость, отсутствие аппетита, тошнота, рвота; нарушения общего состояния от вялости, депрессии и оглушенности до сопора и комы. Могут нарушаться когнитивные функции, особенно у пожилых больных. При уровне общего кальция в сыворотке > 3,5—3,75 ммоль/л нередко отмечается возбуждение, вплоть до психоза.

2. Сердечно-сосудистая система: артериальная гипертония, аритмии, укорочение интервала QT, повышенная чувствительность к сердечным гликозидам. При снижении ОЦК может развиться артериальная гипотония.

3. Почки: снижение СКФ и концентрационной способности, полиурия, жажда, нефрокальциноз и мочекаменная болезнь. В зависимости от причины гиперкальциемии экскреция кальция может колебаться от низкой до значительно повышенной.

4. ЖКТ: язвенная болезнь, желудочно-пищеводный рефлюкс, острый панкреатит, запоры.

VI. Первичный гиперпаратиреоз. Это самая частая причина гиперкальциемии. Распространенность первичного гиперпаратиреоза составляет 0,05—0,1%; у женщин он встречается в 4 раза чаще, чем у мужчин. Пик заболеваемости приходится на 60—70 лет.

А. Этиология

1. Аденомы паращитовидных желез,одиночные или множественные, обнаруживаются у 80—85% больных.

2. Гиперплазия паращитовидных желез обнаруживается у 15—20% больных.

3. Рак паращитовидных желез встречается менее чем в 1% случаев.

Гиперпаратиреоз, обусловленный гиперплазией или новообразованиями паращитовидных желез, может быть как спорадическим, так и семейным (с аутосомно-доминантным наследованием). Наследственный первичный гиперпаратиреоз — один из компонентов синдромов МЭН. Он имеется у 90% больных МЭН типа I и у 50% больных МЭН типа IIa (см. гл. 45, п. II). В обоих случаях гиперпаратиреоз обычно обусловлен гиперплазией всех паращитовидных желез, реже — аденомами. Обычно гиперпаратиреоз бывает первым проявлением МЭН типа I.

Б. Патогенез. При первичном гиперпаратиреозе нарушен механизм подавления секреции ПТГ в ответ на гиперкальциемию. Порог чувствительности гиперпластических или опухолевых клеток к кальцию значительно повышен по сравнению с нормой либо вообще отсутствует. В результате эти клетки секретируют избыточные количества ПТГ. Избыток ПТГ ускоряет резорбцию костной ткани и усиливает вымывание кальция из костей, что приводит к гиперкальциемии. Под влиянием избытка ПТГ снижается порог реабсорбции фосфата в почках; в результате возникают фосфатурия и гипофосфатемия. Канальцевая реабсорбция кальция усиливается, но этот эффект ПТГ нивелируется повышенной клубочковой фильтрацией кальция вследствие гиперкальциемии, поэтому экскреция кальция с мочой увеличивается. Избыток ПТГ и гипофосфатемия стимулируют синтез 1,25(OH)2D3 в почечных канальцах. Под влиянием 1,25(OH)2D3 усиливается всасывание кальция в кишечнике, что еще больше усиливает гиперкальциемию. Гиперкальциурия и усиленное всасывание кальция в кишечнике отмечаются соответственно у 40 и 60% больных первичным гиперпаратиреозом.

В. Клиническая картина

1. Симптомы перечислены в табл. 24.2.

2. Примерно в 50% случаев болезнь протекает бессимптомно, и только случайно обнаруженная гиперкальциемия позволяет заподозрить гиперпаратиреоз. При обследовании у большинства больных с гиперкальциемией выявляют клинические признаки первичного гиперпаратиреоза. У молодых больных клиническая картина обычно не соответствует тяжести гиперкальциемии.

3. Тяжелые поражения костей (фиброзно-кистозный остит,замещение кроветворной ткани костного мозга соединительной тканью) 20—40 лет назад обнаруживались у 10—25% больных первичным гиперпаратиреозом и считались патогномоничным признаком этого заболевания. В последнее время эти поражения встречаются гораздо реже, обычно у больных с почечной недостаточностью.

4. Для подтверждения диагноза показана биопсия костной ткани. У большинства больных независимо от тяжести заболевания имеются характерные гистологические признаки первичного гиперпаратиреоза: истончение компактного вещества трубчатых костей, кисты и так называемые бурые опухоли (очаги замещения костной ткани фиброзной тканью с большим количеством остеокластов и макрофагов, нагруженных гемосидерином). Примерно у трети больных выявляется остеопения.

5. При денситометрии костей выявляется значительное снижение плотности костной ткани.

6. При первичном гиперпаратиреозе увеличен риск переломов костей предплечья, бедренных костей и позвоночника.

7. Повышение активности щелочной фосфатазы и уровня остеокальцина в сыворотке свидетельствует об ускоренной перестройке и нарушениях метаболизма костной ткани.

8. Мочекаменная болезнь с образованием кальциевых камней либо нефрокальциноз отмечаются у 40—50% больных с клиническими признаками первичного гиперпаратиреоза. В то же время менее 5% больных с кальциевыми камнями почек страдают первичным гиперпаратиреозом. Мочекаменная болезнь чаще поражает молодых больных первичным гиперпаратиреозом; пик заболеваемости приходится на 20—40 лет. Предполагают, что это связано с более высоким уровнем 1,25(OH)2D3 в молодом возрасте. Действительно, у молодых больных существует четкое соответствие между степенью гиперкальциурии, уровнем 1,25(OH)2D3 и образованием камней в почках.

9. Артериальная гипертония наблюдается у 30—50% больных первичным гиперпаратиреозом. Известно, что острая гиперкальциемия сопровождается подъемом АД и у здоровых людей. Механизмы развития артериальной гипертонии при первичном гиперпаратиреозе не выяснены.

Г. Лабораторная диагностика

1. Гиперкальциемия имеется у большинства больных. Если при подозрении на гиперпаратиреоз уровень общего кальция лишь незначительно превышает норму либо повышается эпизодически, следует определить концентрацию свободного кальция. У некоторых больных с повышенным уровнем ПТГ концентрация свободного кальция в сыворотке оказывается нормальной. Это состояние принято называть нормокальциемическим гиперпаратиреозом. Причины нормокальциемического гиперпаратиреоза:

а. Почечная недостаточность (нарушение канальцевой реабсорбции кальция).

б. Нарушение всасывания кальция в кишечнике.

в. Авитаминоз D. Признак авитаминоза D — остеомаляция. Чтобы отличить гиперпаратиреоз с авитаминозом D от изолированного авитаминоза D, проводят пробное лечение витамином D. На фоне заместительной терапии витамином D у больных с гиперпаратиреозом возникает гиперкальциемия, а у больных с изолированным авитаминозом D восстанавливается нормокальциемия.

г. Преходящая нормокальциемия может встречаться на ранних стадиях развития первичного гиперпаратиреоза.

д. Чтобы подтвердить диагноз гиперпаратиреоза у больных с рецидивирующей мочекаменной болезнью и нормокальциемией натощак, можно попытаться выявить гиперкальциемию после приема пищи на фоне повышенного уровня ПТГ. Можно также провести провокационную пробу с тиазидными диуретиками. Их назначают на 1—2 нед. У больных без гиперпаратиреоза уровень кальция повышается умеренно (до верхней границы нормы). Поскольку регуляция обмена кальция у таких больных не нарушена, уровень кальция возвращается к исходному уже во время приема препаратов (обычно к концу 1-й недели). У больных первичным гиперпаратиреозом уровень кальция повышается значительно и нормализуется только через несколько суток после отмены препаратов.

2. Уровень ПТГ в сыворотке определяют методом РИА с антителами к срединному фрагменту гормона (аминокислоты 43—68). Более точен иммунорадиометрический метод с использованием двух антител (к N- и C-концевым фрагментам ПТГ). Этот метод позволяет измерить концентрацию ПТГ1—84. В последнее время для определения концентрации ПТГ1—84 используют также ИФА и иммунохемилюминесцентный метод. Одновременно с уровнем ПТГ1—84 измеряют уровень общего или свободного кальция. В большинстве случаев этих исследований достаточно для установления диагноза.

3. Измерение уровня общего или нефрогенного цАМФ в моче позволяет оценить действие ПТГ на почки. В последнее время эти исследования редко используют в диагностике первичного гиперпаратиреоза, поскольку доступны чувствительные методы определения ПТГ1—84. Однако оценка экскреции цАМФ полезна для выяснения причин других нарушений минерального обмена.

4. Уровень кальция в моче может быть нормальным или повышенным. Экскреция кальция зависит от его потребления с пищей, всасывания в кишечнике, концентрации в сыворотке, фильтрации в почечных клубочках и от влияния ПТГ на канальцевую реабсорбцию кальция. Таким образом, гиперкальциемия при первичном гиперпаратиреозе не всегда сопровождается повышением уровня кальция в моче. Для гиперкальциемии иного происхождения характерна повышенная экскреция кальция, поэтому его нормальная экскреция на фоне гиперкальциемии подтверждает диагноз первичного гиперпаратиреоза гораздо убедительнее, чем изолированное повышение экскреции кальция. При первичном гиперпаратиреозе экскреция кальция коррелирует с повышением уровня 1,25(OH)2D3.


Дата добавления: 2015-09-29; просмотров: 15 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.02 сек.)







<== предыдущая лекция | следующая лекция ==>