Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

1.Наука экология.Предмет изучения.Задачи науки. 1 страница



1.Наука экология.Предмет изучения.Задачи науки.

Эколо́гия - наука о взаимодействиях живых организмов и их сообществ между собой и с окружающей средой. Термин впервые предложил немецкий биолог Эрнст Геккель в 1866 году. Объекты исследования экологии — в основном, системы выше уровня отдельных организмов: популяции, биоценозы, экосистемы, а также вся биосфера. Предмет изучения — организация и функционирование таких систем. Задачи экологии: 1. разработка общей теории устойчивости экологических систем; 2. изучение экологических механизмов адаптации к среде; 3. исследование регуляции численности популяций; 4. изучение биологического разнообразия и механизмов его поддержания; 5. исследование продукционных процессов; 6. исследование процессов, протекающих в биосфере, с целью поддержания ее устойчивости; 7. моделирование состояния экосистем и глобальных биосферных процессов. Основные прикладные задачи, которые экология должна решать в настоящее время, следующие:

· прогнозирование и оценка возможных отрицательных последствий в окружающей природной среде под влиянием деятельности человека;

· улучшение качества окружающей природной среды;

· сохранение, воспроизводство и рациональное использование природных ресурсов.

Оптимизация инженерных, экономических, организационно-правовых, социальных и иных решений для обеспечения экологически безопасного устойчивого развития, в первую очередь в экологически наиболее неблагополучных районов.

2.Глобальные проблемы экологии

Существует масса глобальных проблем, порождённых новыми изобретениями человечества. Несомненно, новые и продвинутые технологии дают возможность развиваться в мире науки. Этими технологиями мы пользуемся каждый день – бензин для автомобиля, выделяющий вредные для окружающей среды выхлопные газы; полиэтиленовые мешки для покупок, не перерабатываемые и не способные разлагаться в земле, и масса других вещей. Безусловно, это не самые важные и решающие изобретения. Кроме загрязнения почвы нарушается дизбаланс воздуха, также загрязняется Мировой океан; воды, пригодной для питья, становится меньше. Чаще происходят войны, основанные на конфликтах по поводу принадлежности тех или иных видов ископаемых на территориях какой-либо страны. Люди уже не могут обойтись без использования нефти и других нефтепродуктов, что существенно портит экологию.Человек, делая различные открытия, всё больше вмешивается в хозяйство биосферы, в которой существует наша жизнь. Подвергая эту часть планеты загрязнениям, мы рискуем собственной жизнью, будущим наших потомков, которых есть больше вероятность, что раз не мы, так они застанут последствия химического загрязнения окружающей среды. Среди этих загрязнений – газообразные и аэрозольные вещества, существенно портящие экологию.Кроме того, увеличивается массовая доля углекислого газа в воздухе. Из-за этого есть вероятность наступления глобального потепления, о чём давно уже информируют наши экологи. Неблагоприятное воздействие оказывает и выброс нефти в океан. Это нарушает естественный обмен между гидросферой и атмосферой.На загрязнение окружающей среды влияет и присутствие ТЭЦ, выбрасывающие кроме дыма сернистый газ. Загрязняется атмосфера не только промышленностью, но и транспортом. Транспорт – необходимая часть жизни человека, удобное средство передвижения, доступное в любом месте. Это существенно облегчило жизнь горожанам, особенно учитывая, что место жительства и работа находятся в разных городах.У всех этих изобретений есть как плюсы, так и минусы, зачастую более значимые. Наш долг – развивать науку «зелёными» методами – изобретать вещества, более дружелюбные к окружающей природе – например, природный бензин без вредных выхлопных газов, био-косметику, в конце-концов использовать при покупке товаров не полиэтиленовые новые пакеты, а сумки из ткани.Внося какой-нибудь маленький, даже самый незаметный вклад, но обьединившись в большую силу, мы сможем восстановить экологию нашей планеты и подарить жизнь в экологически чистой атмосфере ещё множеству поколений.



3.Структура экологии

Структура экологии как науки состоит из четырех основных разделов, это биоэкология, геоэкология, экология человека и прикладная экология.

Биоэкологию составляют экологии естественных биологических систем, это особи, виды, популяции и сообщества, а также экология биоценозов. Имеется эволюционная экология это еще одно подразделение биоэкологи, которая изучает экологические аспекты эволюции.Биосферные оболочки Земли изучает геоэкология, а также подземную гидросферу, минеральную основу биосферы и протекающие в них изменения из-за влияния техногенных и природных процессов. Носят геоэкологические исследования комплексный характер, они включают в себя исследование ландшафтов, поверхностных и подземных вод, почв, горных пород, растительного покрова, воздуха. Экология человека – это комплекс дисциплин, которые исследуют взаимодействие человека как личности и биологической особи с окружающей его социальной, культурной и природной средами. Здоровье человечества зависит от экологической обстановки и образа жизни, так же оказывает влияние среда традиций, морали, духовности и воззрений.Комплексом дисциплин представляется прикладная экология, которые связаны с разными областями человеческой деятельности и содействие человека и природы. Изучает она механизмы антропогенных и техногенных влияний на экосистемы, формирует экологические нормативы и критерии в транспорте, промышленности и сельском хозяйстве. Законы формирования техносферы изучает инженерная экология, а также способы инженерной защиты природной среды. Экологический менеджмент исследует управление взаимосвязей природы и общества, взяв за основу использование административных, экономических, социальных, информационных и технологических факторов, целью является достижение планируемого качества окружающей среды.

 

 

4.Основные этапы развития экологии

1 ЭТАП: АНТИЧНЫЙ: (6 в до н. э., – начало н. э.):

«Провозвестником будущей экологии» Кашкаров называл Аристотеля, который интересовался образом жизни животных. Классифицируя их, разделяя на водных, сухопутных и земноводных, древний ученый тем самым подчеркивал их связь с окружающей средой. В трудах Теофраста имеется много сведений по экологии растений. В своих трудах он сообщает наблюдения о зависимости растений от климата, почвы и способов возделываеия. На разнообразии жизненных форм (деревья, кустарники, полукустарники и травы) была основана у него классификация растений.Таким образом, элементы экологического воззрения на природу, на живые организмы можно обнаружить буквально на заре становления ботаники, зоологии и сельского хозяйства.В средние века интерес к изучению природы ослабевает.

На смену средневековью приходит эпоха Возрождения.Великие географические открытия, обогатившие мир сведениями о новых растениях и животных из диковинных, заморских стран, способствовали развитию биологических наук.

2 ЭТАП: ПРЕДПОСЫЛКИ ДЛЯ ФОРМИРОВАНИЯ ЭКОЛОГИИ: (1749-1866 гг..):

Карл Линней в своих трудах (1749) подчеркивал ведущее влияние климатических условий на жизнь организмов, отмечал необходимость регулярных фенологических наблюдений. Он писал о поддержании равновесия в природе, высказывая мысль, что наряду с размножением организмов важна и их гибель, потому что гибель одних организмов делает возможным существование других.

Примичательным для этого периода являются труды Бюффона, в которых много внимания уделено связям организмов со средой. Фактически он обосновывал принцип влияния среды на существование растений и животных.Много фактов экологического содержания было собрано натуралистами России, которые открывали для науки животный и растительный мир нашей страны.

Гмелин впервые описывает чернозем и вечную мерзлоту (1747). Лепехин указал на зависимость растительности от качества почвы и климатических условий. О влиянии среды на организм писал Ломоносов. Он первый высказал мысли о воздушном питании растений и др.Эволюционная теория Чарлза Дарвина, сформулированная им в гениальном труде «Происхождение видов путем естественного отбора» (1859), во многом опиралась на идеи экологии. Его труды насыщены экологическими фактами и обобщениями, а некоторые работы, по сути, посвящены вопросам экологии и жизни сообществ живых существ. В подтверждение необычной роли борьбы за существование Дарвин приводит массу примеров конкретного экологического содержания:

- адаптации организмов к среде обитания;

- взаимосвязи и взаимозависимости живых существ;

- изменчивости свойств;

- быстрого увеличения численности растений и животных при возникновении благоприятных условий;

- влияния организмов на среду и др.Теория Чарлза Дарвина послужила серьезным стимулом для дальнейшего развития экологии как особой области естествознания.

3 ЭТАП: ФОРМИРОВАНИЕ ЭКОЛОГИИ КАК САМОСТОЯТЕЛЬНОЙ НАУКИ: 1866 г.:

Выход в свет труда Дарвина и победа эволюционного учения в биологии открывают новый период в истории экологии – ее отделение от других наук.

Родившись в недрах ботаники, зоологии, биогеографии, экология в конце 19 в. благодаря учению Дарвина превратилась в науку об адаптации организмов. Именно в этот период появилось много работ о роли температуры, влажности, света в жизни растений и животных.

4 ЭТАП: РАЗВИТИЕ ЭКОЛОГИИ КАК КОМПЛЕКСНОЙ НАУКИ: 1910 г.:

Проблемы исследований были настолько обширны, а решаемые задачи так важны, что в 1910 г. ученые поставили вопрос о разделении экологии растений на 2 отдела: экологию особей и экологию сообществ. Первая часть экологии была названа аутэкологией, а вторая – синэкологией. Это деление экологии было вскоре принято и в зооэкологии.

В России деление экологии пошло дальше. В результате была выделена новая наука – фитоценология, названная позднее геоботаникой.

5 ЭТАП:

С 60-х гг. 20 в. начинается новый период в развитии экологии, который характеризуется бурным ростом экологических исследований во всех странах. Постоянно нарастает масса информации по различным экологическим проблемам.

Экология разделилась на множество направлений и дисциплин, часть которых была включена в учебные планы подготовки биологов и географов в вузах. Введение же в 1975 г. курса экологии в пединститутах обусловило создание учебников по общей экологии.

5.Методы изучения в экологии.

Методы исследований в экологии подразделяются на полевые, экспериментальные и методы моделирования.

Полевые методы представляют собой наблюдения за функционированием организмов в их естественной среде обитания.

Экспериментальные методы включают в себя варьирование различных факторов, влияющих на организмы, по выработанной программе в стационарных лабораторных условиях.

Методы моделирования позволяют прогнозировать развитие различных процессов взаимодействия живых систем между собой и с окружающей их средой

Методы экологии подразделяются на полевые (изучение жизни организмов и их сообществ в естественных условиях, т. е. длительное наблюдение в природе с помощью различной аппаратуры) и экспериментальные (эксперименты в стационарных лабораториях, где имеется возможность не только варьировать, но и строго контролировать влияние на живые организмы любых факторов по заданной программе). При этом экологи оперируют не только биологическими, но и современными физическими и химическими методами, используют моделирование биологических явлений, т. е. воспроизведение в искусственных экосистемах различных процессов, происходящих в живой природе. Посредством моделирования можно изучить поведение любой системы с целью оценки возможных последствий применения различных стратегий и методов управления ресурсами, т. е. для экологического прогнозирования. Для изучения и прогнозирования природных процессов широко используется также метод математического моделирования. Такие модели экосистем строятся на основе многочисленных сведений, накопленных в полевых и лабораторных условиях. При этом правильно построенные математические модели помогают увидеть то, что трудно или невозможно проверить в эксперименте. Однако сама по себе математическая модель не может служить абсолютным доказательством правильности той или иной гипотезы, но она служит одним из путей анализа реальности. Сочетание полевых и экспериментальных методов исследования позволяет экологу выяснить все аспекты взаимоотношений между живыми организмами и многочисленными факторами окружающей среды, что позволит не только восстановить динамическое равновесие природы, но и управлять экосистемами.

7.Экологические факторы и их классификация.

Экологи́ческие фа́кторы — свойства среды обитания, оказывающие какое-либо воздействие на организм. Индифферентные элементы среды, например, инертные газы, экологическими факторами не являются.

Классификация:

По характеру воздействия

Прямо действующие — непосредственно влияющие на организм, главным образом на обмен веществ

Косвенно действующие — влияющие опосредованно, через изменение прямо действующих факторов (рельеф, экспозиция, высота над уровнем моря и др.)

По происхождению

Абиотические — факторы неживой природы:

климатические: годовая сумма температур, среднегодовая температура, влажность, давление воздуха

эдафические (эдафогенные): механический состав почвы, воздухопроницаемость почвы, кислотность почвы, химический состав почвы

орографические: рельеф, высота над уровнем моря, крутизна и экспозиция склона

химические: газовый состав воздуха, солевой состав воды, концентрация, кислотность

физические: шум, магнитные поля, теплопроводность и теплоёмкость, радиоактивность, интенсивность солнечного излучения

Биотические — связанные с деятельностью живых организмов:

фитогенные — влияние растений

микогенные — влияние грибов

зоогенные — влияние животных

микробиогенные — влияние микроорганизмов

Антропогенные (антропические):

физические: использование атомной энергии, перемещение в поездах и самолётах, влияние шума и вибрации

химические: использование минеральных удобрений и ядохимикатов, загрязнение оболочек Земли отходами промышленности и транспорта

биологические: продукты питания; организмы, для которых человек может быть средой обитания или источником питания

социальные — связанные с отношениями людей и жизнью в обществе

По расходованию

Ресурсы — элементы среды, которые организм потребляет, уменьшая их запас в среде (вода, CO2, O2, свет)

Условия — не расходуемые организмом элементы среды (температура, движение воздуха, кислотность почвы)

По направленности

Векторизованные — направленно изменяющиеся факторы: заболачивание, засоление почвы

Многолетние-циклические — с чередованием многолетних периодов усиления и ослабления фактора, например изменение климата в связи с 11-летним солнечным циклом

Осцилляторные (импульсные, флуктуационные) -колебания в обе стороны от некоего среднего значения (суточные колебания температуры воздуха, изменение среднемесячной суммы осадков в течение года)

6.Уровни организации,изучаемые в экологии.Понятие об экосистеме,популяции.

Различают такие уровни организации живой материи - уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.

Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации. Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика. Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология. Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией. Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология. Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией. Популяционно-видовой уровень - это уровень совокупностей особей - популяций и видов. Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций. На этом уровне изучаются генетические и экологические особенности популяций, элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.

Экосистемный уровень организации - это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме, численность популяций, динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология. Выделяют также биосферный уровень организации живой материи. Биосфера - это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии. Экосисте́ма — биологическая система, состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними. Одно из основных понятий экологии. Популяция – одно из центральных понятий в биологии и обозначает совокупность особей одного вида, которая обладает общим генофондом и имеет общую территорию. Элементарная популяция – это совокупность особей одного вида, занимающих небольшой участок однородной площади. Между ними постоянно идет обмен генетической информацией.

Экологическая популяция – совокупность элементарных популяций, внутривидовые группировки, приуроченные к конкретным биоценозам. Растения одного вида в ценозе называются ценопопуляцией. Обмен генетической информацией между ними происходит достаточно часто.

Географическая популяция – совокупность экологических популяций, заселивших географически сходные районы. Географические популяции существуют автономно, ареалы их относительно изолированы, обмен генами происходит редко – у животных и птиц – во время миграций, у растений – при разносе пыльцы, семян и плодов. На этом уровне происходит формирование географических рас, разновидностей, выделяются подвиды.

 

8.Ресурсы и условия среды.

Чем различаются местообитания? В пустыне, например, жарко и сухо, в тропическом лесу — жарко и влажно, а в тундре — влажно и холодно. В море вода солёная, а в реках — пресная. Можно перечислять отличия и дальше. Всё это — факторы среды (экологические факторы). Факторы бывают разными. Некоторые из них — условия среды — как бы заданы изначально и для всех в данном местообитании одинаковы. Ни исчерпать условия, ни сделать их менее доступными для других организмов невозможно. В самом деле, температуру или солёность воды нельзя ни «израсходовать», ни поделить между собой.

Другие факторы среды —ресурсы, т. е. всё, что организм потребляет или использует, чтобы обеспечить своё существование. Примером «потребления» является пища — источник веществ и энергии. Бутерброд, который жуёт на перемене ученик, — его пищевой ресурс. Однако «использование» следует понимать в более широком смысле. Например, стол в школьной столовой, за которым тот же ученик сидит с бутербродом. Разумеется, этот стол ученик не ест. Но для других его место за столом уже недоступно.

В отличие от условий ресурсы всегда имеются в определённом, исчер-паемом количестве, которое уменьшается в результате жизнедеятельности организмов.

9.Абиотические факторы

Абиотические факторы среды, совокупность условий неорганической среды, влияющих на организмы. А. ф. делятся на химические (химический состав атмосферы, морских и пресных вод, почвы или донных отложений) и физические, или климатические (температура, барометрическое давление, ветер, течения, радиационный режим и т. д.). Строение поверхности (рельеф), геологические и климатические различия земной поверхности создают огромное разнообразие А. ф., играющих неодинаковую роль в жизни приспособившихся к ним видов животных, растений и микроорганизмов. Численность (биомасса)и распределение организмов в пределах ареала зависят от лимитирующих А. ф., т. е. необходимых для существования, но представленных в минимуме (например, вода в пустыне).

 

10.Свет

Свет, есть одна из форм энергии. По первому закону термодинамики, или закону сохранения энергии, энергия может переходить из одной формы в другую. По этому закону, организмы являются термодинамической системой постоянно обменивающейся с окружающей средой энергией и веществом. Организмы, на поверхности Земли подвергаются воздействию потока энергии, в основном солнечной энергий, а также и длинноволного теплового излучения космических тел. Оба эти фактора определяют климатические условия среды (температура, скорость испарения воды, движение воздуха и воды). На биосферу из космоса падает солнечный свет с энергией 2 кал. на 1см2 в 1 мин. Эта так называемая солнечная постоянная. Этот свет, проходя через атмосферу, ослабляется и до поверхности Земли в ясный полдень может дойти не более 67% его энергии, т.е. 1,34 кал. на см2 в 1мин. Проходя через облачный покров, воду и растительность, солнечный свет еще больше ослабляется, и в нем значительно изменяется распределение энергии по разным участкам спектра.Степень ослабления солнечного света и космического излучения зависит от длины волны (частоты) света. Ультрафиолетовое излучение с длиной волны менее 0,3 мкм почти не проходит через озоновый слой (на высоте около 25 км). Такое излучение опасно для живого организма в частности для протоплазмы.В живой природе свет единственный источникэнергии, все растения, кроме бактерий фотосинтезируют, т.е. синтезируют органические вещества из неорганических веществ (т.е. из воды, минеральных солей и СО2 — при помощи лучистой энергии в процессе ассимиляции). Все организмы зависят в питании от земных фотосинтезирующих т.е. хлорофиллоносных растений.

Свет как экологический фактор делится на ультрафиолетовый с длиной волны - 0,40 - 0,75 мкм и инфракрасный с длиной волны больше этих величии.Действие этих факторов зависит от свойства организмов. Каждый вид организма адаптирован к тому или иному спектру длиной волны света. Одни виды организмов адаптировались к ультрафиолетовым, а другие к инфракрасным.Некоторые организмы способны различить длину волны. Они обладают специальными световоспринимаемыми системами и имеют цветное зрение, которые имеют огромное значение в их жизнедеятельности. Многие насекомые чувствительны к коротковолновому излучение, которое человек не воспринимает. Ночные бабочки хорошо воспринимают ультрафиолетовые лучи. Пчелы и птицы точно определяют свое местонахождение и ориентируются на местности даже ночью.

Организмы сильно реагируют и на интенсивность света. По этим признакам растения делятся на три экологические группы:

1. Светолюбивые, солнцелюбивые или гелиофиты - которые способны нормально развиваться только под солнечными лучами.

2 Тенелюбивые, или сциофиты - это растения нижних ярусов лесов и глубоководные растения, например, ландыши и другие.При снижении интенсивности света замедляется и фотосинтез. У всех живых организмов существуют пороговые чувствительности интенсивности света, а также к другим экологическим факторам. У различных организмов пороговая чувствительность к экологическим факторам неодинакова. Например, интенсивный свет тормозит развитие мух дрозофилл, даже вызывает их гибель. Не любят свет и тараканы и другие насекомые. У большинства фотосинтетических растений при слабой интенсивности света идет торможение синтеза белков, а у животных тормозятся процессы биосинтеза.

3. Теневыносливые или факультативные гелиофиты. Растения которые хорошо растут и в тени и на свету. У животных эти свойства организмов называются светолюбивые (фотофилы), тенелюбивые (фотофобы), эврифобные — стенофобные.

11.Влажность

Первоначально все организмы были водными. Завоевав сушу, не утратили зависимости от воды. Составной частью всех живых организмов является вода. Влажность — это количество водяного пара в воздухе. Без влажности или воды нет жизни.Влажность - это параметр характеризующий содержание водяного пара в воздухе. Абсолютная влажность - это количество водяного пара в воздухе и зависит от температуры и давления. Это количество называется относительной влажностью (т.е. соотношение количества водяного пара в воздухе к насыщенному количеству пара при определенных условиях температуры и давления.)В природе существует суточный ритм влажности. Влажность колеблется по вертикали и горизонтали. Этот фактор наряду со светом и температурой играет большую роль в регулировании активности организмов и их распространении. Влажность изменяет и эффект температуры.

Важным экологическим фактором является иссушение воздуха. Особенно для наземных организмов, имеет огромное значение иссушающие действие воздуха. Животные приспосабливаются, передвигаясь в защищенные места и активный образ жизни ведут ночью.Растения поглощают воду из почвы и почти полностью (97-99%) испаряется через листья. Этот процесс называется транспирацией. Испарение охлаждает листья. Благодаря испарению идет транспорт ионов, через почву к корням, транспорт ионов между клетками и т.д.Определенное количество влажности совершенно необходима для наземных организмов. Многие из них для нормальной жизнедеятельности нуждаются в относительной влажности 100%, и наоборот организм находящийся в нормальном состоянии, не может жить долгое время в абсолютно сухом воздухе, ибо он постоянно теряет воду. Вода есть необходимая часть живого вещества. Поэтому потеря воды в известном количестве приводит к гибели.Растения сухого климата приспосабливается морфологическими изменениями, редукцией вегетативных органов, особенно листьев.

Наземные животные также приспосабливаются. Многие из них пьют воду, другие всасывают ее через покровы тела в жидком или парообразном состоянии. Например, большинство амфибий, некоторые насекомые и клещи. Большая часть животных пустынь никогда не пьет, они удовлетворяют свои потребности за счет воды, поступившей с пищей. Другие животные получает воду в процессе окисления жиров.Вода для живых организмов совершенно необходима. Поэтому организмы распространяются по местообитанию в зависимости от своих потребностей: водные организмы в воде живут постоянно; гидрофиты могут жить только в очень влажных средах.

С точки зрения экологической валентности гидрофиты и гигрофиты относятся к группе стеногигров. Влажность сильно влияет на жизненные функции организмов, например, 70% относительная влажность была очень благоприятным для полевого созревания и плодовитости самок перелетной саранчи. При благоприятном размножении они причиняют огромный экономический урон посевам многих стран.Для экологической оценки распространения организмов пользуются показателем сухости климата. Сухость служит селективным фактором для экологической классификации организмов. Таким образом, в зависимости от особенностей влажности местного климата виды организмов распределяются по экологическим группам:

1. Гидатофиты — это водные растения.

2. Гидрофиты — это растения наземно-водные.

3. Гигрофиты — наземные растения живущие в условиях повышенной влажности.

4. Мезофиты — это растения, произрастающие при среднем увлажнении

5. Ксерофиты — это растения произрастающие с недостаточным увлажнением. Они в свою очередь делятся на: суккуленты — сочные растения (кактусы); склерофиты — это растения с узкими и мелкими листьями, и свернутыми в трубочки. Они также делятся на эуксерофиты и стипаксерофиты. Эуксерофиты — это степные растения. Стипаксерофиты — это группа узколистных дерновинных злаков (ковыль, типчак, тонконог и др.). В свою очередь мезофиты также делятся на мезогигрофиты, мезоксерофиты и т.д.Уступая по своему значению температуре, влажность относится тем не менее к основным экологическим факторам. На протяжении большей части истории живой природы органический мир был представлен исключительно водными нормами организмов. Составной частью огромного большинства живых существ является вода, и для осуществления размножения или слияния гамет почти все они нуждаются в водной среде. Сухопутные животные вынуждены создавать в своем теле искусственную водную среду для оплодотворения, а это приводят к тому, что последнее становится внутренним.

Влажность - это количество водяного пара в воздухе. Его можно выразить в граммах на кубический метр.

12.Температура

Температура является важнейшим экологическим фактором. Температура оказывает огромное влияние на многие стороны жизнедеятельности организмов их географии распространения, размножения и другие биологические свойства организмов зависящие в основном от температуры. Диапазон, т.е. пределы температур в которых может существовать жизнь, колеблется примерно от -200°С до +100°С, иногда обнаруживается существование бактерии в горячих источниках при температуре 250°С. В действительности, большинство организмов могут существовать при еще более узком диапазоне температур.

Некоторые виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться в горячих источниках при температуре, близкой к точке кипения. Верхний температурный предел для бактерии горячих источников лежит около 90°С. Изменчивость температуры очень важна с экологической точки зрения.

Любой вид способен жить только в пределах определенного интервала температур, так называемые максимальной и минимальной летальной температурами. За пределами этих критических крайних температур, холод или жара, наступает смерть организма. Где-то между ними находится оптимальная температура, при которой жизнедеятельность всех организмов, живого вещества в целом идет активно.

По толерантности организмов к температурному режиму они делятся на эвритермные и стенотермные, т.е. способные переносить колебание температуры в широких пределах или узких пределах. Например, лишайники и многие бактерии могу жить при различной температуре, или орхидеи и другие теплолюбивые растения тропических поясов — являются стенотермными.

Некоторые животные способны поддерживать постоянную температуру тела, не зависимо от температуры окружающей среды. Такие организмы называются гомойтермными. У других животных температура тела меняется в зависимости от температуры окружающей среды. Их называют пойкилотермными. В зависимости от способа адаптации организмов к температурному режиму они делятся на две экологические группы: криофиллы — организмы приспособленные к холоду, к низким темпера турам; термофилы — или теплолюбивые

13.Морфологические адаптации организмов к t

Морфологические адаптации – изменения в строении организма (например, видоизменение листа в колючку у кактусов для снижения потерь воды, яркая окраска цветков для привлечения опылителей). Морфологические адаптации у растений и животных приводят к образованию определенных жизненных форм. По сравнению с растениями животные обладают более разнообразными возможностями регулировать температуру тела, а именно:

путем химической терморегуляции - активным изменением величины теплопродукции повышением метаболизма;

путем физической терморегуляции - изменением уровня теплоотдачи на основе развития теплозащитных покровов, особыми устройствами крoвеносной системы, распределением жировых запасов, особенно в бурой жировой ткани и т. п.

Кроме того, некоторые особенности поведения животных также cпособствуют существованию их в изменчивых условиях среды: выбор места с благоприятными микроклиматическими условиями - зарывание в песок, в норки, под камни (животные жарких степей и пустынь), активность в определенный период суток (змеи, тушканчики, суслики), сооружение хранилищ, гнезд и др.

Одно из самых важных прогрессивных приспособлений - способность к терморегуляции организма у млекопитающих и птиц, их теплокровность. Благодаря этому экологически важному приспособлению высшие животные относительно независимы от температурных условий среды.

Важное значение для поддержания температурного баланса имеет отношение поверхности тела к его объему, так как количество выработанного тепла зависит от массы тела, а теплообмен осуществляется через покровы.

На связь размеров и пропорций тела животных с температурно-климатическими условиями указывает правило Бергмана, согласно которому из двух близких видов теплокровных, отличающихся размерами, более крупный обитает в более холодном климате, а также правило Аллепа, по которому у многих млекопитающих и птиц северного полушария относительные размеры конечностей и других выступающих частей (ушей, клювов, хвостов) увеличиваются к югу и уменьшаются к северу (для уменьшения теплоотдачи в холодном климате).

14.Биотические факторы.Межвидовые отношения

Биотические факторы окружающей среды — факторы живой среды, влияющие на жизнедеятельность организмов.

Беклемишев В.Н. разделил биотические факторы на 4 группы:

топические — по изменению среды (разрывание почвы)

трофические — пищевые отношения (продуценты, консументы, редуценты)

фабрические — по жилищу (паразитические черви используют организм как среду обитания)

форические — по переносу (рак отшельник переносит актинию)

Возможные типы комбинации отражают различные виды взаимоотношений:

нейтрализм — взаимоотношения между организмами не приносят друг другу ни вреда, ни пользы

синойкия (квартирантство) — сожительство, при котором особь одного вида использует особь другого вида только как жилище, не принося своему «живому дому» ни пользы, ни вреда. Например, пресноводная рыбка горчак откладывает икринки в мантийную полость двухстворчатых моллюсков. Развивающиеся икринки надежно защищены раковиной моллюска, но они безразличны для хозяина и не питаются за его счет.

конкуренция — антагонистические отношения между организмами (видами), связанные борьбой за пищу, самку, место обитания и другие ресурсы

мутуализм (взаимовыгодный симбиоз) — совместное сожительство организмов разных видов, приносящее взаимную пользу. Например, лишайники являются симбиотическими организмами, тело которых построено из водорослей и грибов. Нити гриба снабжают клетки водоросли водой и минеральными веществами, а клетки водорослей осуществляют фотосинтез и, следовательно, снабжают гифы грибов органическими веществами.

протокооперация (кооперация) — это полезные взаимоотношения организмов, когда они могут существовать друг без друга, но вместе им лучше. Например, рак-отшельник и актиния, акулы и рыбы-прилипалы.

комменсализм — совместное сожительство организмов разных видов, при котором один организм использует другой как жилище и источник питания, но не причиняет вреда партнеру. Например, некоторые морские полипы, поселяясь на крупных рыбах, в качестве пищи используют их испражнения. В желудочно-кишечном тракте человека находится большое количество бактерий и простейших, питающихся остатками пищи и не причиняющих вреда хозяину.

аменсализм — это взаимоотношения между организмами, при которых один несет ущерб, а другому они безразличны. Например, гриб пеницилл выделяет антибиотик, убивающий бактерий, но вторые на гриб никак не влияют.

паразитизм — это форма антагонистического сожительства организмов, относящихся к разным видам, при котором один организм (паразит), поселяясь на теле или в теле другого организма (хозяина), питается за его счет и причиняет вред. Болезнетворное действие паразитов слагается из механического повреждения тканей хозяина, отравления его продуктами обмена, питания за его счет. Паразитами являются все вирусы, многие бактерии, грибы, простейшие, некоторые черви и членистоногие. В отличие от хищника паразит использует свою жертву длительно и далеко не всегда приводит ее к смерти. Нередко вместе со смертью хозяина погибает и паразит. Связь паразита с внешней средой осуществляется опосредованно через организм хозяина.

хищничество.

Антагонистическиевзаимоотношенияпаразитов и хищников со своими жертвами поддерживают численность популяции одних и других на определенном относительно постоянном уровне, что имеет большое значение в выживании видов.

15.Основные законы экологии.

Закон минимума (сформулированный Ю. Либихом): стойкость организма определяется самым слабым звеном в цепи ее экологических потребностей. Если количество и качество экологических факторов близкие к необходимому организму минимума, он выживает, если меньшие за этот минимум, организм гибнет, экосистема разрушается.

Закон оптимума — любой экологический фактор имеет определённые пределы положительного влияния на живые организмы. Он определяет границы условий, в которых возможно существование видов, а также меру изменчивости этих условий. Виды чрезвычайно разнообразны по способности переносить изменения факторов.

Закон толерантности (закон Шелфорда): лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического влияния, диапазон между которыми определяет степень выносливости (толерантности) организма к данному фактору. Соответственно закону любой излишек вещества или энергии в экосистеме становится его врагом, загрязнителем.

Таким образом, лимитирующими экологическими факторами следует называть такие факторы, которые ограничивают развитие организмов из-за их недостатка или избытка по сравнению с потребностью (оптимальным содержанием). Их иногда называют ограничивающими факторами.

16.Экологическая толерантность(валентность)организма:стенобионты и эврибионты.

Экологическая валентность - диапазон способности вида существовать в разнообразных условиях среды.

При высокой экологической валентности организмы могут выдерживать большие колебания одного или группы факторов среды.

При невысокой экологической валентности организмы могут жить лишь в определенных условиях среды при весьма незначительных их колебаниях.

Стенобионты — животные и растения, способные существовать лишь при относительно постоянных условиях окружающей среды (температуры, солености, влажности, наличия определенной пищи и т. д.). Например, все внутренние паразиты. Некоторые стенобионты зависят от какого-либо одного фактора, например сумчатый медведь коала — от наличия эвкалипта, листьями которого он питается.

Эврибионты — организмы, способные существовать в широком диапазоне природных условий окружающей среды и выдерживать их значительные изменения.

Так, например, животные, обитающие в зонах с континентальным климатом способны переносить значительные сезонные колебания температуры, влажности и других природных факторов. Жители литоральных областей регулярно подвергаются колебаниям температуры и солёности окружающей воды, а также осушению.

Эврибионтные организмы, как правило, имеют морфофизиологические механизмы, позволяющие им поддерживать постоянство своей внутренней среды даже при резких колебаниях условий окружающей среды.

17.Экологическая ниша.Понятия о фундаментальной и реализованной нише.

Экологи́ческая ни́ша — место, занимаемое видом в биоценозе, включающее комплекс его биоценотических связей и требований к факторам среды.

По Хатчинсону экологическая ниша может быть:

фундаментальной — определяемой сочетанием условий и ресурсов, позволяющим виду поддерживать жизнеспособную популяцию;

реализованной — свойства которой обусловлены конкурирующими видами.

Фундаментальная экологическая ниша — это вся совокупность необходимых для вида условий существования при отсутствии какого-либо давления со стороны другого вида. Реализована ниша — более узкая, она включает конкурентов, хищников. Таким образом, экологическая ниша — это физическое пространство с присущими экологичными условиями, определяющими существование любого организма, место вида в природе (положение в пространстве, функциональная роль в биоценозе, отношение к абиотическим факторам среды).

18.Водная среда обитания.Экологические группы гидробионтов.

Вода покрывает 71% площади земного шара. В морях-океанах, как в горах, выражена вертикальная зональность. Особенно сильно различаются по экологии пелагиаль – вся толща воды, и бенталь – дно.

Три экологические группы: нектон, планктон и бентос.

Нектон - активно передвигающиеся крупные животные, способные преодолевать большие расстояния и сильные течения: рыбы, кальмары, ластоногие, киты. В пресных водоемах к нектону относятся и земноводные и множество насекомых.

Планктон – совокупность растений (фитопланктон: диатомовые, зеленые и сине-зеленые (только пресные водоемы) водоросли, растительные жгутиконосцы, перидинеи и др.) и мелких животных организмов (зоопланктон: мелкие ракообразные, из более крупных – крылоногие моллюски, медузы, гребневики, некоторые черви), обитающих на разной глубине, но не способных к активным передвижениям и к противостоянию течениям. В состав планктона входят и личинки животных, образуя особую группу – нейстон. Это пассивно плавающее «временное» население самого верхнего слоя воды, представленное разными животными (десятиногие, усоногие и веслоногие ракообразные, иглокожие, полихеты, рыбы, моллюски и др.) в личиночной стадии. Личинки, взрослея, переходят в нижние слои пелагели. Выше нейстона располагается плейстон – это организмы, у которых верхняя часть тела растет над водой, а нижняя – в воде(ряска)

Бентос – гидробионты дна. Представлен в основном прикрепленными или медленно передвигающимися животными (зообентос: фораминефоры, рыбы, губки, кишечнополостные, черви, плеченогие моллюски, асцидии, и др.), более многочисленными на мелководье. На мелководье в бентос входят и растения (фитобентос: диатомовые, зеленые, бурые, красные водоросли, бактерии). На глубине, где нет света, фитобентос отсутствует. У побережий встречаются цветковые растения зостера, рупия. Наиболее богаты фитобентосом каменистые участки дна.

19.Наземно-воздушная среда обитания.

Наземно-воздушная среда обитания – самая сложная по экологическим условиям для жизни. Выход жизни в наземно-воздушную среду обитания у разных групп организмов оказался возможным благодаря появлению специфических адаптаций.

Наземно-воздушная среда представляет для нас особый интерес, поскольку именно здесь — на границе двух оболочек Земли — обитает подавляющее большинство животных и растений. Нетрудно заметить, что эта среда качественно отличается от водной среды по своим физическим параметрам.

Рассмотрим особенности наземно-воздушной среды обитания:

Недостаток воды часто является лимитирующим фактором для наземных организмов. Низкая теплоемкость и низкая теплопроводность воздуха приводит к значительным перепадам температуры: при изменении прямой освещенности, суточные перепады, сезонные перепады (сезонность характерна для умеренных и высоких широт). В то же время, низкая теплоемкость и теплопроводность воздуха делают возможным развитие теплокровности у птиц и млекопитающих.

Низкая вязкость и низкая плотность воздуха позволяет приобретать разнообразную форму тела у животных. В то же время лимитирующим фактором становится гравитация. Для летающих животных необходимо формирование обтекаемой формы тела и крыльев. Для крупных животных необходимо формирование скелета. Для растений необходимо наличие механических тканей и определенной формы кроны.

Поглощение света происходит за счет топических межвидовых взаимодействий, что приводит к появлению ярусности.

Высокое содержание кислорода при низкой влажности воздуха приводит к появлению у животных разнообразных органов дыхания (трахеи, легкие).

Неравномерное распределение элементов минерального питания сказывается, в первую очередь, на растениях, что приводит к мозаицизму.

20.Почва как среда жизни.

Почва представляет собой поверхностный слой суши, состоящий из смеси минеральных веществ, полученных при распаде горных пород, и органических веществ, возникших в результате разложения растительных и животных остатков микроорганизмами. В поверхностных слоях почвы обитают различные организмы разрушители остатков отмерших организмов (грибы, бактерии, черви, мелкие членистоногие и др.). Активная деятельность этих организмов способствует образованию плодородного слоя почвы, пригодного для существования многих живых существ. Почва характеризуется большой плотностью, незначительными колебаниями температуры, умеренной влажностью, недостаточным содержанием кислорода и высокой концентрацией углекислого газа. Ее пористая структура обеспечивает проникновение газов и воды, что создает благоприятные условия для таких почвенных организмов, как водоросли, грибы, простейшие, бактерии, членистоногие, моллюски и другие беспозвоночные.

21.Организм как среда жизни.

Использование организмов как среды жизни началось с момента их появления на Земле (вспомните теорию эндосимбиоза). Внутри другого организма могут селиться либо симбионты, либо паразиты. Почти все организмы имеют паразитов. Особенно благоприятны для обитания паразитических форм высокоорганизованные животные и растения. Так, в организме животных имеются все условия для существования паразитов, например, гельминтов или простейших. Организм как среда обитания имеет ряд особенностей: наличие легкоусвояемой пищи, постоянная температура, постоянное наличие воды, отсутствие конкурентов и др. Вместе с тем имеются и определенные трудности: дефицит кислорода, отсутствие света, ограниченность пространства для передвижения, проявление защитных реакций хозяина и др. Организмы, населяющие хозяина, называют эндобионтами. В процессе эволюции у них выработались специальные приспособления к жизни в определенных органах и тканях хозяина. Например, у ленточных червей редуцировалась пищеварительная система и органы чувств, появились присоски для прикрепления к стенкам кишечника, органы размножения обеспечивают высокую плодовитость и др. Часто у паразитических эндобионтов достаточно сложный цикл развития со сменой хозяев.

22.Популяция.Типы популяций.

Популя́ция — совокупность особей одного вида, занимающих определенный ареал, свободно скрещивающихся друг с другом, имеющих общее происхождение, генетическую основу и в той или иной степени изолированных от других популяций данного вида.

Элементарная популяция (микропопуляция) -это небольшая группировка особей одного вида в биогеоценозе. В состав входят близкие в генетическом плане особи. Различие между микропопуляциями определяются средой обитания. Однако различия довольно быстро стираются из-за перемещения особей.

Экологическая популяция - это группа особей, обладающая свойством целостности, с особым местообитанием, характеризуется единством экологических реакций на внешние воздействия. У обитателей одного природного сообщества развивается особый, уникальный, но единообразный тип реакций, образа жизни биологических ритмов. Популяции такого типа отграничены, но не изолированы друг от друга. А, следовательно, довольно часто происходит обмен генетической информацией.

Географическая популяция- это крупная территориальная группировка особей общего населения вида. Она адаптирована к особенностям климата, рельефа и составу живого населения разных биогеоценозов на большом географическом пространстве ареала вида. Географические популяции обычно разделены преградами (реки, озера, горы и т.д.). Однако полной изолированности не происходит. Такие популяции обычно делятся на группы (в зависимости от биогеоценозов, микроклимата и т.д.).

23.Динамические и статистические характеристики популяций.

К статистическим показателям относятся их численность, плотность и показатели структуры.

Численность - это поголовье животных или количество растений, например деревьев, в пределах некоторой пространственной единицы - ареала, бассейна реки, акватории моря, области, района.

Плотность - число особей, приходящихся на единицу площади, например, плотность населения - количество человек, приходящееся на один квадратный километр, или для гидробионтов - это количество особей на единицу объема, на литр или кубометр.

Показатели структуры: половой - соотношение полов, размерный - соотношение количества особей разных размеров, возрастной - соотношение количества особей различного возраста в популяции.

Основными динамическими показателями (характеристиками) популяций являются: рождаемость, смертность и скорость роста популяций.

Рождаемость, или скорость рождаемости, - это число особей, рождающихся в популяции за единицу времени. При рассмотрении экосистем пользуются другими динамическим показателем - продукцией - суммой прироста массы всех особей (независимо от того, сколько они прожили) из множества популяций биогенного сообщества за определенный промежуток времени.

Рождаемость делится на::

1. абсолютную рождаемость - число особей, появившихся в популяции за единицу времени;

2. удельную рождаемость - выражается в числе родившихся особей на число особей в популяции в единицу времени;

3. максимальную рождаемость - определяется числом самок в популяции и их способностью производить определенное число детенышей в единицу времени;

4. экологическую рождаемость - рождаемость ниже максимальной, т.к. соответствует сложившимся экологическим условиям.

Смертность, или скорость смертности, - это число особей, погибших в популяции в единицу времени. Но убыль или прибыль организмов в популяции зависит не только от рождаемости и смертности, но и от скорости их иммиграции и эмиграции, т.е. количества особей, прибывших и убывших в популяции в единицу времени. Увеличение численности, прибыль зависят от количества рожденных (рожденных за какой-то период времени) и иммигрировавших особей, а уменьшение, убыль численности - от гибели (смертности) и эмиграции особей.

Явления иммиграции и эмиграции на численность влияют несущественно, поэтому ими при расчетах можно пренебречь. Рождаемость, или скорость рождаемости, выражают отношением:N n / t.

Где Nn-число особей, родившихся за некоторый промежуток времени t.

Но для сравнения рождаемости в различных популяциях пользуются величиной удельной рождаемости: отношение скорости рождаемости к исходной численности (N):N n / N t.

Смертность - величина обратная рождаемости, но измеряется в тех же величинах и вычисляется по аналогичной формуле. Если принять, что N m - число погибших особей за время t, то удельная смертность:N m/ N t,

Величины рождаемости и смертности по определению могут иметь только положительное значение либо равное нулю.

Скорость изменения численности популяции, т.е. ее чистое увеличение и уменьшение, можно представить и как изменение N за t, а при t 0 можно ее определить как мгновенную скорость изменения численности, которая может быть рассчитана как:

r = b - d

Анализ уравнения показывает, что если b=d, то r = 0, и популяция находится в стационарном состоянии; если же b=d, то r может быть величиной положительной (b>d) и мы имеем численный рост популяции, или отрицательный (b<d), что говорит о снижении численности на данном отрезке времени. Эта формула важна как раз для определения смертности, которую трудно измерить непосредственно, а определить r достаточно просто непосредственными наблюдениями, тогда d=b- r.

 

24.Численность и плотность популяции.Пространственное размеещние особей.

ЧИСЛЕННОСТЬ популяции- число особей, относящихся к одной популяции.

Плотность популяции - это среднее число особей, приходящееся на единицу площади или объема

Особи, составляющие популяцию, могут иметь различные типы пространственного распределения, выражающие их реакции на благоприятные и неблагоприятные физические условия или конкурентные отношения. Значение типа распределения организмов очень важно при оценке плотности популяции методом выборки.

Особи, составляющие популяцию, могут иметь различные типы пространственного распределения, выражающие их реакции на благоприятные и неблагоприятные физические условия.

1 Равномерное – встречается в природе крайне редко. Оно чаще связано с острой конкуренцией между разными особями. Такой тип распределения характерен (хищные рыбы и колюшки с их территориальным инстинктом, пластинчато-жаберный моллюск на берегу Ла-Манша).

2.Случайное – только в однородной среде и у видов, не обнаруживающих склонности к скоплению (мучной хрущак в муке).

3.Групповое – группы могут распределяться случайно ил скоплениями (пространственное распределение деревьев в лесу).

 

25.Половая и возрастная структура популяции.

Половая структура отражает определенное соотношение мужских и женских особей в популяции. Генетический механизм определения пола обеспечивает расщепление потомства по полу в соотношении 1: 1. В силу разной жизнеспособности мужских и женских особей это первичное соотношение полов при оплодотворении часто заметно отличается от вторичного (при рождении -- у млекопитающих) и тем более от третичного, характерного для половозрелых особей. Например, в популяциях человека вторичное соотношение полов составляет 100 девочек/106 мальчиков; к 16--18 годам это соотношение выравнивается и становится равным 1:1, к 50 годам-- 100 женщин/85 мужчин, а к 80 годам соотношение по полу становится 2:1 (100 женщин/ 50 мужчин).

Изменение половой структуры популяции отражается на ее роли в экосистеме, так как самцы и самки многих видов отличаются друг от друга по характеру питания, ритму жизни, поведению и др. Так, самки некоторых видов комаров, клещей и мошек являются кровососущими, в то время как самцы питаются соком растений или нектаром. Преобладание доли самок над самцами обеспечивает более интенсивный рост популяции.

Возрастная структура отражает соотношение различных возрастных групп в популяциях, зависящее от продолжительности жизни, времени наступления половой зрелости, числа потомков в помете, количества потомств за сезон и др. Если какая-либо возрастная группа сокращается либо увеличивается, это сказывается на общей численности популяции. Например, массовое истребление крупных половозрелых особей в результате промысла приводит к резкому снижению численности популяции вследствие слабого пополнения ее молодыми особями. Поэтому присутствие в популяции большого количества особей младших возрастных групп свидетельствует о ее благополучии. Если же в популяции преобладают старые особи, можно со всей определенностью сказать, что данная популяция завершает свое существование.

26.Кривые выживания.Типы роста популяции.

Кривую выживания можно получить, если начать некоторой популяции новорожденных особей и затем отмечать число выживших в зависимости от времени. По вертикальной оси обычно откладывают или абсолютное число выживших особей или их процент от исходной популяции:(число выживших/число исходной)*100%

I. Сильно выпуклая кривая характерна для видов, у которых смертность резко повышается лишь к концу жизни, а до этого она остается низкой. Такой тип кривой характерен для многих видов крупных животных и, конечно, для человека.

II. К промежуточному типу относятся кривые выживания таких видов, у которых смертность мало изменяется с возрастом и остается более или менее одинаковой в течение всей жизни данной группы. Волнообразные кривые всегда характерны для многих видов птиц, мышей, кроликов и других организмов.

III. Другой крайний вариант — сильно вогнутая кривая. Она получается, если смертность очень высока на ранних стадиях жизни. Хорошей иллюстрацией этого типа служат рыбы, устрицы или другие двустворчатые моллюски, а также дубы. Смертность очень велика у свободно плавающих личинок и прорастающих желудей. Но как только особи подрастают и хорошо приживаются на подходящем субстрате, их смертность резко снижается.

:Характер увеличения численности популяции может быть различным. В связи с этим выделяют 2 типа роста популяций. Их различия можно проиллюстрировать с помощью кривых.J – образное, а другая S- образное начертание. В первом случае плотность популяции увеличивается с возрастающей скоростью до тех пор, пока не начнут действовать факты, ограничивающие рост. При втором типе роста популяция вначале увеличивается медленно, затем быстрее, но вскоре под влиянием сопротивления среды рост постепенно замедляется. В конце концов, достигается равновесие, которое и сохраняется. Закон роста популяции первого типа можно сформулировать в виде математического соотношения, N t = Nо e r t, где Nо исходная численность, N t – численность во время t, е - основание натуральных логарифмов, r – врожденная скорость роста. Ему соответствует J-образная кривая называется кривой экспоненциального роста. При S- образной кривой роста, называемой логистической, скорость прироста численности популяции пропорциональна разности между достигнутой величиной популяции (ее плотностью в данный момент времени N0) и максимально возможной плотностью в данной среде обитания (К), Модель Ферхюльста. N t = К Nо/ Nо+(К- Nо) e-(r t). Характерные типы роста популяций можно наблюдать, когда тех или иных животных вселяют в незанятые области или они сами переселяются в новые районы. Экспоненциальная J-образная кривая хорошо показывает рост популяций некоторых микроорганизмов, например, грибковых дрожжей, некоторых микроскопических водорослей. В целом, чем крупнее организмы, тем ближе к логическому типу рост плотности их популяций.

27.Этологическая структура популяций.(Внутривидовые биотические факторы).

Этологическая структура популяций — это система отношений между членами одной популяции. Формы совместного существования особей в популяциях разнообразны.

Одинокий образ жизни характерен для многих видов на определенной стадии жизненного цикла.

Семья — группа особей, в которой усиливается связь между потомками и родителями. Она может быть смешанного типа (птицы, некоторые млекопитающие); родительского типа (воспитание осуществляет самец, например африканский страус, колюшка) материнского типа (саламандра, червьяга).

Колония — групповое объединение оседлых животных. Они могут существовать долго или возникать только на период размножения (птицы, морские котики, тюлени, термиты, пчелы, муравьи, сурки, лемминги).

Стая — временное объединение животных одного вида (волки, птицы, рыбы). Наиболее распространенная зграйнисть среди птиц и рыб, из млекопитающих она характерна для многих собачьих. Стаи рыб очень изменчивы по величине, форме, плотности. У птиц стаи формируются во время сезонных перелетов или зимних кормлений (у оседлых и кочевых форм). В стаях млекопитающих большую роль играют вожаки, специфические отношения складываются между отдельными особями, что сближает эти групповые образование со стадами.

Стада — длительные и постоянного объединения животных по сравнению со стаями. Основу группового поведения животных в стадах составляют взаимоотношения доминирования — подчиненности, основанные на индивидуальных различиях между особями.

28.Понятие биотического потенциала и гомеостаза популяции.

Биотический потенциал-способность вида противостоять неблагоприятным воздействиям внешней среды.

Гомеостаз– это способность популяции или экосистемы поддерживать устойчивое динамическое равновесие в изменяющихся условиях среды. В основе гомеостаза лежит принцип обратной связи. В отличие от созданных человеком кибернетических устройств, управляющие функции природных систем находятся внутри них, а поддержание гомеостаза происходит за счет саморегуляции. Гомеостатические механизмы функционируют в определенных пределах, обозначенных внешними или внутренними лимитирующими факторами. Для популяции поддержание гомеостаза имеет первостепенное значение.

Механизмы популяционного гомеостаза включают поддержание определенной пространственной структуры (благодаря особенностям социальных отношений и характеру использования территории), поддержание генетической структуры (через богатство генома популяции и геномов каждой особи) и регуляцию плотности населения (без которой невозможно оптимальное использование территории).

Поскольку деятельность человека приводит к сокращению численности популяций многих видов, понимание механизмов регуляции численности чрезвычайно важно для гармоничного взаимодействия человека с природными системами. Рациональное природопользование и создание охраняемых природных территорий можно считать попытками регулирования численности популяции некоторых видов. К сожалению, они приводят лишь к снижению скорости деградации природных систем, но не компенсируют всего негативного воздействия на них.

29.Биоценоз.Структура биоценоза.

Биоценоз— это исторически сложившаяся совокупность животных, растений, грибов и микроорганизмов, населяющих относительно однородное жизненное пространство (определённый участок суши или акватории), они связаны между собой и со средой.

Биоценозы характеризуются определенной структурой. Выделяют видовую, пространственную и экологическую структуру биоценоза.

Видовое разнообразие — число видов в


Дата добавления: 2015-09-29; просмотров: 22 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.076 сек.)







<== предыдущая лекция | следующая лекция ==>