Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

23Моноокси́д углеро́да (уга́рный газ, о́кись углеро́да) — бесцветный ядовитый газ (при нормальных условиях) без вкуса и запаха. Химическая формула — CO. Оксид углерода(II)



23Моноокси́д углеро́да (уга́рный газ, о́кись углеро́да) — бесцветный ядовитый газ (при нормальных условиях) без вкуса и запаха. Химическая формула — CO. Оксид углерода(II) представляет собой бесцветный газ без вкуса и запаха. Горюч. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей. Основными типами химических реакций, в которых участвует оксид углерода(II), являются реакции присоединения и окислительно-восстановительные реакции, в которых он проявляет восстановительные свойства. При комнатных температурах CO малоактивен, его химическая активность значительно повышается при нагревании и в растворах. Так, в растворах он восстанавливает соли Au, Pt, Pd и других до металлов уже при комнатной температуре. При нагревании восстанавливает и другие металлы, например CO + CuO → Cu + CO2↑. Это широко используется в пирометаллургии. На реакции CO в растворе с хлоридом палладия основан способ качественного обнаружения CO, см. ниже. Окисление СО в растворе часто идёт с заметной скоростью лишь в присутствии катализатора. При подборе последнего основную роль играет природа окислителя. Так, KMnO4 быстрее всего окисляет СО в присутствии мелкораздробленного серебра, K2Cr2O7 — в присутствии солей ртути, KClO3 — в присутствии OsO4. В общем, по своим восстановительным свойствам СО похож на молекулярный водород. Температура горения CO может достигать 2100 °CОксид углерода(II) реагирует с галогенами. Наибольшее практическое применение получила реакция с хлором:

Восстанавливает SO2:

 

 

 

 

 

 

 

 

C переходными металлами образует горючие и ядовитые соединения — Карбонилы, такие как Cr(CO)6, Ni(CO)4, Mn2CO10, Co2(CO)9 и др. Некоторые из них летучие.

 

 

Оксид углерода(II) незначительно растворяется в воде, однако не реагирует с ней. Также он не вступает в реакции с растворами щелочей и кислот. Лабораторный способ
Разложение жидкой муравьиной кислоты под действием горячей концентрированной серной кислоты, либо пропускание газообразной муравьиной кислоты над оксидом фосфора P2O5. Схема реакции: Можно также обработать муравьиную кислоту хлорсульфоновой. Эта реакция идёт уже при обычной температуре по схеме: Нагревание смеси щавелевой и концентрированной серной кислот Нагревание смеси гексацианоферрата(II) калия с концентрированной серной кислотой. Реакция идёт по уравнению: Восстановлением из карбоната цинка магнием при нагревании: Диокси́д углеро́да (углеки́слый газ, двуо́кись углеро́да, окси́д углеро́да (IV), у́гольный ангидри́д) — бесцветный газ (в нормальных условиях), без запаха, со слегка кисловатым вкусом. При атмосферном давлении диоксид углерода не существует в жидком состоянии, переходя непосредственно из твёрдого состояния в газообразное. Твёрдый диоксид углерода называют сухим льдом. При повышенном давлении и обычных температурах углекислый газ переходит в жидкость, что используется для его хранения. Оксид углерода(IV) — углекислый газ, газ без запаха и цвета, при сильном охлаждении кристаллизуется в виде белой снегообразной массы — «сухого льда». При атмосферном давлении он не плавится, а испаряется, температура сублимации −78 °С. Углекислый газ образуется при гниении и горении органических веществ. Содержится в воздухе и минеральных источниках, выделяется при дыхании животных и растений. Растворим в воде (1 объём углекислого газа в одном объёме воды при 15 °С). По химическим свойствам диоксид углерода относится к кислотным оксидам. При растворении в воде образует угольную кислоту. Реагирует с щёлочами с образованием карбонатов и гидрокарбонатов. Вступает в реакции электрофильного замещения (например, с фенолом) и нуклеофильного присоединения (например, с магнийорганическими соединениями). Оксид углерода(IV) не поддерживает горения. Взаимодействие с оксидом активного металла: При растворении в воде образует угольную кислоту .Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов. В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора, мела или соды с соляной кислотой. Использование реакции серной кислоты с мелом или мрамором приводит к образованию малорастворимого сульфата кальция, который мешает реакции, и который удаляется значительным избытком кислоты. У́гольная кислота́ — слабая двухосновная кислота с химической формулой В водных растворах неустойчива[2]. Образуется в малых количествах при растворении углекислого газа в воде[1], в том числе и углекислого газа из воздуха. Образует ряд устойчивых неорганических и органических производных: соли (карбонаты и гидрокарбонаты), сложные эфиры, амиды и др. Проявляет свойства слабых кислот. Будучи двухосновной, образует два типа солей карбонаты и гидрокарбонаты. Три гибридные орбитали атома углерода участвуют в образовании трех связей с атомами кислорода, оставшаяся р-орбиталь углерода перекрывается с аналогичной орбиталью кислорода.
Карбонаты двухвалентных металлов трудно растворимы в воде, но их растворимость повышается в присутствии углекислого газа за счет образования гидрокарбонатов: СаСО3 + СО2 + Н2О = Са(НСО3)2.
Карбонаты металлов (кроме щелочных металлов) при нагревании декарбоксилируются с образованием оксида:
CuCO3 = CuO + CO2.
Температура распада карбонатов повышается по мере усиления электроположительного характера металла и ионного характера связи, карбонаты щелочных металлов не разлагаются.
Гидрокарбонаты разлагаются до карбонатов:
2NaHCO3 = Na2CO3 + H2O + CO2. Угарный газ очень опасен, так как не имеет запаха и вызывает отравление и даже смерть. Признаки отравления: головная боль и головокружение; отмечается шум в ушах, одышка, сердцебиение, мерцание перед глазами, покраснение лица, общая слабость, тошнота, иногда рвота; в тяжёлых случаях судороги, потеря сознания, кома[3][1]. Токсическое действие оксида углерода(II) обусловлено образованием карбоксигемоглобина — значительно более прочного карбонильного комплекса с гемоглобином, по сравнению с комплексом гемоглобина с кислородом (оксигемоглобином)[3]. Таким образом, блокируются процессы транспортировки кислорода и клеточного дыхания. Концентрация в воздухе более 0,1 % приводит к смерти в течение одного часа[3]. Парнико́вый эффе́кт — повышение температуры нижних слоёв атмосферы планеты по сравнению с эффективной температурой, то есть температурой теплового излучения планеты, наблюдаемого из космоса. Атмосфера, содержащая многоатомные газы (двухатомные газы диатермичны — прозрачны для теплового излучения), поглощающие в этой области спектра (т. н. парниковые газы — H2O, CO2,



 

24Реакция соединения углерода с азотом сильно эндотермична и частично протекает только при очень высоких температурах. Из простейших азотистых производных углерода наиболее важна цианистоводородная кислота (Н–C = N) которая может быть получена из СО и аммиака по реакции CO + NH3 = H2 O + HCN в присутствии ТhО2 (как катализатора), достаточно быстро идущей уже около 500 °С. образуется циан (N≡C–C≡N). Он представляет собой бесцветный ядовитый газ (т. пл. –28°С, т. кип. –21 °С), при поджигании на воздухе сгорающий до СО2 и N2. По ряду химических свойств циан обнаруживает большое сходство с галоидами, причем роль атома галоида играет одновалентный радикал CN. 19) Взаимодействие циана со щелочами протекает аналогично подобным же реакциям галоидов – с одновременным образованием солей синильной и циановой (Н– N = C = O) кислот: (CN)2 + 2KOH = KCN + KNCO + H2 O Цианат калия образуется и при нагревании KCN на воздухе. Соль эта легко растворима в воде, причем постепенно разлагается ею по схеме: KNCO + 2H2 O = NH3 + KHCO3. Тот же элементарный состав, что и циановая, имеет гремучая кислота (Н–О–N ≡> C), отличающаяся от циановой расположением атомов в молекуле. Обе они очень неустойчивы. Из их солей наиболее важна гремучая ртуть [Hg(ONC)2 ]. Она взрывается при ударе и применяется в качестве детонатора. Распад ее идет по схеме: Hg(ONC)2 = Hg+2CO+N2 +118 ккал. глерода галогениды, соединения углерода с галогенами. У. г. обычно рассматривают как производные углеводородов, в которых водород полностью замещен на галоген.
Простейшими У. г. являются тетрагалогениды общей формулы CX4, молекулы которых имеют тетраэдрическое строение с расстояниями С—F, С—Сl, С—Вr и С—I, соответственно: (Å) 1,36; 1,76; 1,94; 2,12, и энергиями связи (кдж/моль): 487; 340: 285; 214 или в ккал/моль 116; 81; 68; 51. При обычных условиях CF4— газ (tkип —128 °С), CCl4 — жидкость (tпл —22,9 °С, tkип 76,8 °C), CBr4 и Cl4— твёрдые тела (tпл 93,7 и 171 °С). Все тетрагалогениды практически нерастворимы в воде и растворимы в органических растворителях. В соответствии с уменьшением энергии связи устойчивость CX4 падает, а химическая активность возрастает при переходе от фтора к иоду. CF4 и CCl4 устойчивы к нагреванию и действию воздуха, света, кислот. Cl4 легко разлагается при нагревании. Только CF4 может быть получен непосредственно взаимодействием элементов. Один из способов синтеза CCl4 и CBr4 — реакция CS2 с галогенами. Cl4 получают при взаимодействии CCl4 с иодидами алюминия, висмута и др. металлов. Из тетрагалогенидов углерода наибольшее значение имеет четырёххлористый углерод. Известны также смешанные У. г., например CClF3, CCBr2Cl2, С2Вг2F4. Многие У. г. широко применяют в различных отраслях техники, например дифтордихлорметан CCl2F2 и трихлорфторметан CCl3F как хладоагенты в холодильных установках (фреоны), тетрафторэтилен C2F4 и трифторхлорэтилен C2ClF3 — мономеры в производстве фторопластов, гексахлорэтан C2Cl6— заменитель камфоры, некоторые фторхлор-содержащие У. г.— компоненты синтетических масел. Дициан (циан, цианоген) — динитрил щавелевой кислоты, бесцветный, горючий газ с резким запахом; ограниченно растворим в воде, лучше — в спирте, эфире, уксусной кислоте, ядовит. При длительном нагревании дициана при (400 °C) он полимеризуется, превращаясь в тёмноокрашенный аморфный порошок — так называемый «парациан» (CN)x, (х = ~2000-3000), который при 800 °C разлагается на азот, углерод, и циан. Также для циана характерны т. наз. псевдогалогенные свойства, то есть он подобно хлору взаимодействует с водными растворами щелочей:
Например: (CN)2 + 2KOH = KCN + KCNO + H2O. Получается каталитическим окислением синильной кислоты, взаимодействием раскалённого кокса с азотом, дегидратацией диамида щавелевой кислоты (CONH2)2. Другими способами дициан получаю термическим разложением цианидов тяжёлых металлов, или обменным разложением цианистой меди с сернокислой медью или хлорным железом в растворе. Образуется при пиролизе азотсодержащих органических соединений и поэтому в малых количествах содержится в коксовом и доменном газах, спектроскопически обнаружен в кометах, обнаружен в атмосфере Титана. Сини́льная (циа́нистоводородная) кислота́, цианистый водород, HCN[1] — бесцветная, очень летучая, легкоподвижная ядовитая жидкость, имеющая характерный запах[2]. Синильная кислота содержится в некоторых растениях, коксовом газе, табачном дыме, выделяется при термическом разложении нейлона, полиуретанов. Смешивается во всех соотношениях с водой, этанолом, диэтиловым эфиром. Молекула HCN сильно полярнаБезводный цианистый водород является сильно ионизирующим растворителем, растворенные в нем электролиты хорошо диссоциируют на ионы. Его относительная диэлектрическая проницаемость при 25 °C равна 107 (выше, чем у воды). Это обусловлено линейной ассоциацией полярных молекул HCN за счет образования водородных связей. Очень слабая одноосновная кислота К = 1,32·10−9 (18 °C). Образует с металлами соли — цианиды. Взаимодействует с оксидами и гидроксидами щелочных и щёлочноземельных металлов. Пары синильной кислоты горят на воздухе фиолетовым пламенем с образованием Н2О, СО2 и N2. В смеси кислорода со фтором горит с выделением большого количества тепла. С хлором, бромом и иодом прямо образует циангалогенидыС галогеналканами — нитрилыС алкенами и алкинами реагирует, присоединяясь к кратным связям: Легко полимеризуется в присутствии основания (часто со взрывом). Образует аддукты, например HCN-CuCl. Цианиды — соли цианистоводородной (синильной) кислоты. В номенклатуре IUPAC к цианидам относят также C-производные синильной кислоты — нитрилы[1]. Основой способ получения цианидов щелочных металлов — взаимодействие соответствующего гидроксида с синильной кислотой, в частности, это основной метод получения наиболее крупнотоннажного цианида — цианида натрия. Добыча золота требует использования значительных участков земли и больших количеств опасных химических веществ. Наиболее распространенным методом извлечения золота из бедных руд путем перевода золота в водорастворимое комплексное соединение является цианирование золота, также известное как процесс Макартура-Фореста. Цианидные растворы используются в горнодобывающей промышленности преимущественно для извлечения золота, но они также реагируют и с другими металлами, такими как Cu, Zn, Co и Hg. Горнодобывающая промышленность России вот уже многие годы успешно применяет цианиды (CN), но не следует забывать, что это опасные химические вещества, требующие очень осторожного обращения. При кучном цианидном выщелачивании золота подготовленный слабый раствор цианида натрия (в среднем 0,015%) просачивается сквозь дробленую руду и растворяет золото. Затем золотосодержащий раствор собирают и извлекают из него золото, а раствор используют повторно. Снизу, под раствором и рудой, проложен непроницаемый изолирующий материал, который позволяет собрать золотосодержащий раствор и препятствует утечке опасного цианидаВажную роль в круговороте углерода в природе играет оксид углерода (IV). Он образуется в результате сжигания нефти и продуктов её переработки, в результате разложения карбонатов, дыхания животных и человека. В то же время, углекислый газ поглощается растениями в процессе фотосинтеза и поглощается природными водами. Схема круговорота углерода в природе представлена на рисунке:

25Кре́мний — элемент главной подгруппы четвёртой группы третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 14. Обозначается символом Si (лат. Silicium), неметалл. 14
Кремний
Si28,086
3s23p2В природе кремний — второй по распространенности после кислорода химический элемент. Земная кора более чем на четверть состоит из его соединений. Наиболее распространенным соединением кремния является его диоксид SiO2, другое его название — кремнезем. В природе он образует минерал кварц (рис. 46) и многие разновидности, такие, как горный хрусталь и его знаменитая лиловая форма — аметист, а также агат, опал, яшма, халцедон, сердолик, которые известны как поделочные и полудрагоценные камни. Диоксид кремния — это также обычный и кварцевый песок.
Второй тип природных соединений кремния — это силикаты. Среди них наиболее распространены алюмосиликаты (понятно, что эти силикаты содержат алюминий). К алюмосиликатам относятся гранит, различные виды глин, слюды. Силикатом, не содержащим алюминий, является, например, асбест.


Важнейшее соединение кремния — оксид SiO2 необходим для жизни растений и животных. Он придает прочность стеблям растений и защитным покровам животных. Благодаря ему тростники, камыши и хвощи стоят крепко, как штыки, острые листья осоки режут, как ножи, стерня на скошенном поле колет, как иголки, а стебли злаков настолько крепки, что не позволяют ниве на полях ложиться от дождя и ветра. Чешуя рыб, панцири насекомых, крылья бабочек, перья птиц и шерсть животных прочны, так как содержат кремнезем.

Кремний входит и в состав низших живых организмов — диатомовых водорослей и радиолярий, — нежнейших комочков живой материи, которые создают свои непревзойденные по красоте скелеты из кремнезема. Кремниевые фотоэлементы могут превратить в электрическую до 10% поглощенной солнечной энергии. Кремний горит в кислороде, образуя известный уже вам диоксид кремния, или оксид кремния(1У):

Si+ 02 = SiO2

Будучи неметаллом, при нагревании он соединяется с металлами с образованием силицидов, например:

Si + 2Mg = Мg2 Si

Силициды легко разлагаются водой или кислотами, при этом выделяется газообразное водородное соединение кремния — силан:

Мg2 Si + 2Н2SO4 = 2MgSO4 + SiH4

В отличие от углеводородов силан на воздухе самовоспламеняется и сгорает с образованием диоксида кремния и воды:

SiH4 + 202 = SiO2 + 2Н2О

Повышенная реакционная способность силана по сравнению с метаном СН4 объясняется тем, что у кремния больше размер атома, чем у углерода, поэтому химические связи —Н слабее связей С—Н.

Кремний взаимодействует с концентрированными водными растворами щелочей, образуя силикаты и водород:

Si + 2NаОН + Н20 = Na2SiО3 + 2Н2

Кремний получают, восстанавливая его из диоксида магнием или углеродом.

Оксид кремния(IV), или диоксид кремния, или кремнезем, как и С02, является кислотным оксидом. Однако в отличие от С02 имеет не молекулярную, а атомную кристаллическую решетку. Поэтому SiO2 твердое и тугоплавкое вещество. Он не растворяется в воде и кислотах, кроме, как вы знаете, плавиковой, но взаимодействует при высоких температурах со щелочами с образованием солей кремниевой кислоты — силикатов. SiO2 + СаС03 = СаSiO3 + С02

Силикаты натрия и калия называют растворимым стеклом. Их водные растворы — это хорошо известный силикатный клей.

Из растворов силикатов действием на них более сильных кислот — соляной, серной, уксусной и даже угольной получается кремниевая кислота Н2SiO3:

К2SiO3 + 2НСl = 2КСl + Н2SiO3

Следовательно, Н2SiO3 очень слабая кислота. Она нерастворима в воде и выпадает из реакционной смеси в виде студенистого осадка, иногда заполняющего компактно весь объем раствора, превращая его в полутвердую массу, похожую на студень, желе. При высыхании этой массы образуется высокопористое вещество — силикагелъ, широко применяемый в качестве адсорбента — поглотителя других веществ.

Применение кремния. Вы уже знаете, что кремний применяют для получения полупроводниковых материалов, а также кислотоупорных сплавов. При сплавлении кварцевого песка с углем при высоких температурах образуется карбид кремния SiC, который по твердости уступает только алмазу. Поэтому его используют для затачивания резцов металлорежущих станков и шлифовки драгоценных камней.

Из расплавленного кварца изготавливают различную кварцевую химическую посуду, которая может выдерживать высокую температуру и не трескается при резком охлаждении.

Соединения кремния служат основой для производства стекла и цемента.

Обычное оконное стекло имеет состав, который можно выразить формулой

Nа20 • СаО • 6SiO2

Его получают в специальных стекловаренных печах сплавлением смеси соды, известняка и песка.

Отличительная особенность стекла — способность размягчаться и в расплавленном состоянии принимать любую форму, которая сохраняется при застывании стекла. На этом основано производство посуды и других изделий из стекла. Другой важный материал, получаемый на основе соединения кремния, — цемент. Его получают спеканием глины и известняка в специальных вращающихся печах. Если порошок цемента смешать с водой, то образуется цементное тесто, или, как его называют строители, «раствор», который постепенно затвердевает. При добавлении к цементу песка или щебня в качестве наполнителя получают бетон. Прочность бетона возрастает, если в него вводится железный каркас, — получается железобетон, из которого готовят стеновые панели, блоки перекрытий, фермы мостов и т. д. Водородные соединения кремния (кремневодороды, или силаны) получаются в смеси друг с другом и с водородом при действии разбавленной НСl на силицид магния (Mg2 Si). По составу и структурным формулам кремневодороды (SiH4, Si2 H6 т. д. вплоть до последнего известного члена – Si6 H14) аналогичны углеводородам ряда метана. Большое сходство наблюдается и в отношении физических свойств. Напротив, общая химическая характеристика обоих классов соединений резко различна: в противоположность очень инертным углеводородам силаны чрезвычайно реакционноспособны. На воздухе они легко воспламеняются и с большим выделением тепла сгорают до SiO2 и воды по реакции, например: SiH4 + 2О2 = SiO2 + 2Н2 О + 308 ккалСилици́ды — соединения кремния с менее электроотрицательными элементами (как правило, металлами). Силициды известны для щелочных и щелочноземельных металлов, большей части d-металлов и f-металлов. Be, Ag, Au, Zn, Cd, Hg и все p-элементы силицидов не образуют. Металлоподобные силициды обладают электропроводностью, а некоторые высшие силициды являются полупроводниками. Ряд силицидов, например, V3Si, при низких температурах обладают сверхпроводимостью. Силициды щелочных металлов бурно, со взрывом, реагируют с водой с выделением силанов, легко окисляются кислородом воздуха. Силицид магния Mg2Si не реагирует с водой и растворами щелочей, но взаимодействует с растворами кислот. Силициды щелочноземельных металлов также разлагаются водой, растворами кислот и щелочей.
Силициды переходных металлов тугоплавки и стойки к окислению ввиду образования оксидных (металла или кремния) плёнок.

Oксид кремния (IV) (диоксид кремния, кремнезём SiO2) — бесцветные кристаллы, tпл 1713—1728 °C, обладают высокой твёрдостью и прочностью. Относится к группе кислотных оксидов.
При нагревании взаимодействует с основными оксидами и щелочами.
Растворяется в плавиковой кислоте.
SiO2 относится к группе стеклообразующих оксидов, то есть склонен к образованию переохлажденного расплава — стекла.
Один из лучших диэлектриков (электрический ток не проводит, если не имеет примесей и не нагревается).
Диоксид кремния SiO2 — кислотный оксид, не реагирующий с водой.


При сплавлении SiO2 с щелочами и основными оксидами, а также с карбонатами активных металлов образуются силикаты — соли не имеющих постоянного состава очень слабых, нерастворимых в воде кремниевых кислот общей формулы xH2O·ySiO2 (довольно часто в литературе упоминаются не кремниевые кислоты, а кремниевая кислота, хотя фактически речь при этом идет об одном и том же веществе).

Кремниевые кислоты — очень слабые, малорастворимые в воде кислоты общей формулы nSiO2•mH2O.
Из кремниевых кислот известны метакремниевая H2SiO3, ортокремниевая H4SiO4, дикремниевые H2Si2O5 и H10Si2O9, пирокремниевая H6Si2O7 и поликремниевые nSiO2•mH2O. Соответствующие соли называют силикатами (метасиликаты, ортосиликаты и др.).

Все поликремниевые кислоты малорастворимы в воде. В воде образуют коллоидные растворы по общей схеме реакции: Кремниевые кислоты растворяются в растворах и расплавах щелочей, образуя силикаты: Силикаты взаимодействуют со следующими веществами:

С кислотами, даже с очень слабыми, например, с угольной: Некоторые силикаты применяют для пропитки древесины, чтобы придать ей огнеупорность. Водный раствор силиката натрия используется в качестве силикатного клея. Силикаты используются в качестве поделочных камней[1]. Концентрированные растворы силикатов калия или натрия называют жидким или растворимым стеклом. Физико-химически — твёрдое тело, структурно — аморфно, изотропно; все виды стёкол при формировании преобразуются в агрегатном состоянии — от чрезвычайной вязкости жидкого до так называемого стеклообразного — в процессе остывания со скоростью, достаточной для предотвращения кристаллизации расплавов, получаемых плавлением сырья (шихты) [1][2]. Температура варки стёкол, от 300 до 2500 °C, определяется компонентами этих стеклообразующих расплавов (оксидами, фторидами, фосфатами и др.)[2]. Прозрачность (для видимого человеком излучения) не является общим свойством для всех видов, существующих как в природе, так и в практике стёкол.

26О́лово (лат. Stannum; обозначается символом Sn) — элемент 14-й группы периодической таблицы химических элементов (по устаревшей классификации — элемент главной подгруппы IV группы), пятого периода, с атомным номером 50[3]. Относится к группе лёгких металлов. При нормальных условиях простое вещество олово — пластичный, ковкий и легкоплавкий блестящий металл серебристо-белого цвета. Олово образует две аллотропические модификации: ниже 13,2 °C устойчиво α-олово (серое олово) с кубической решёткой типа алмаза, выше 13,2 °C устойчиво β-олово (белое олово) с тетрагональной кристаллической решеткой[2]. Олово — редкий рассеянный элемент, по распространенности в земной коре олово занимает 47-е место. Кларковое содержание олова в земной коре составляет, по разным данным, от 2·10−4 до 8·10−3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn).

Получение: для добычи олова в настоящее время используют руды, в которых его содержание равно или немного выше 0,1%. На первом этапе руду обогащают (методом гравитационной флотации или магнитной сепарации). Таким образом удается повысить содержание олова в руде до 40-70%. Далее проводят обжиг концентрата в кислороде для удаления примесей серы и мышьяка. Затем полученный таким образом оксид SnO2 восстанавливают углем или алюминием (цинком) в электропечах:

SnO2 + C = Sn + CO2.

Особо чистое олово полупроводниковой чистоты готовят электрохимическим рафинированием или методом зонной плавки.

 

Применение: важное применение олова — лужение железа и получение белой жести, которая используется в консервной промышленности. Для этих целей расходуется около 33% всего добываемого олова. До 60% производимого олова используется в виде сплавов с медью, медью и цинком, медью и сурьмой (подшипниковый сплав, или баббит), с цинком (упаковочная фольга) и в виде оловянно-свинцовых и оловянно-цинковых припоев. Олово способно прокатываться в тонкую фольгу — станиоль, такая фольга находит применение при производстве конденсаторов, органных труб, посуды, художественных изделий. Олово применяют для нанесения защитных покрытий на железо и другие металлы, а также на металлические изделия (лужение). Дисульфид олова SnS2 применяют в составе красок, имитирующих позолоту («сусальное золото»).

Искусственный радионуклид олова 119Sn — источник v-излучения в мессбауэровской спектроскопии.

о роли олова в живых организмах практически ничего не известно. В теле человека содержится примерно (1-2)·10–4 % олова, а его ежедневное поступление с пищей составляет 0,2-3,5 мг. Олово представляет опасность для человека в виде паров и различных аэрозольных частиц, пыли. При воздействии паров или пыли олова может развиться станноз — поражение легких. Очень токсичны некоторые оловоорганические соединения. Временно допустимая концентрация соединений олова в атмосферном воздухе 0,05 мг/м3, ПДК олова в пищевых продуктах 200 мг/кг, в молочных продуктах и соках — 100 мг/кг. Токсическая доза олова для человека — 2 г.

Свине́ц (лат. Plumbum; обозначается символом Pb) — элемент 14-й группы (по устаревшей классификации — главной подгруппы IV группы), шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 82Содержание в земной коре 1,6·10−3 % по массе. Самородный свинец встречается редко, круг пород, в которых он установлен, достаточно широк: от осадочных пород до ультраосновных интрузивных пород. В этих образованиях он часто образует интерметаллические соединения (например, звягинцевит (Pd,Pt)3(Pb,Sn) и др.) и сплавы с другими элементами (например, (Pb + Sn + Sb)). Он входит в состав 80 различных минералов. Для получения свинца в основном используют руды, содержащие галенит. Сначала методом флотации получают концентрат, содержащий 40-70 процентов свинца. Затем возможно несколько способов переработки концентрата в веркблей (черновой свинец): прежде широко распространённый метод шахтной восстановительной плавки, разработанные в СССР метод кислородно-взвешенной циклонной электротермической плавки свинцово-цинковых продуктов (КИВЦЭТ-ЦС), метод плавки Ванюкова (плавка в жидкой ванне)[5]:37-38. Для плавки в шахтной (ватержакетной) печи предварительно производят агломерационный обжиг концентрата, а затем его загружают в шахтную печь, где происходит восстановление свинца из оксида. Веркблей, содержащий более 90 процентов свинца, подвергается дальнейшему очищению. Сначала для удаления меди применяют зейгерование и последующую обработку серой[5]:42. Затем щелочным рафинированием удаляют мышьяк и сурьму. Далее выделяют серебро и золото с помощью цинковой пены и отгоняют цинк[5]:45. Обработкой кальцием и магнием удаляют висмут. В результате содержание примесей падает до менее чем 0,2%[10]. Нитрат свинца применяется для производства мощных смесевых взрывчатых веществ.

Азид свинца применяется как наиболее широкоупотребляемый детонатор (инициирующее взрывчатое вещество).

Перхлорат свинца используется для приготовления тяжелой жидкости (плотность 2,6 г/см³), используемой во флотационном обогащении руд, он иногда применяется в мощных смесевых взрывчатых веществах как окислитель. Фторид свинца самостоятельно, а также совместно с фторидом висмута, меди, серебра применяется в качестве катодного материала в химических источниках тока.

Висмутат свинца, сульфид свинца PbS, иодид свинца применяются в качестве катодного материала в литиевых аккумуляторных батареях.

Хлорид свинца PbCl2 в качестве катодного материала в резервных источниках тока.

Теллурид свинца PbTe широко применяется в качестве термоэлектрического материала (термо-э.д.с 350 мкВ/К), самый широкоприменяемый материал в производстве термоэлектрогенераторов и термоэлектрических холодильников.

Двуокись свинца PbO2 широко применяется не только в свинцовом аккумуляторе, но так же на её основе производятся многие резервные химические источники тока, например — свинцово-хлорный элемент, свинцово-плавиковый элемент и др.

Свинцовые белила, основной карбонат Pb(OH)2•PbCO3, плотный белый порошок, — получается из свинца на воздухе под действием углекислого газа и уксусной кислоты. Использование свинцовых белил в качестве красящего пигмента теперь не так распространено, как ранее, из-за их разложения под действием сероводорода H2S. Свинцовые белила применяют также для производства шпатлевки, в технологии цемента и свинцовокарбонатной бумаги.

Арсенат и арсенит свинца применяют в технологии инсектицидов для уничтожения насекомых — вредителей сельского хозяйства (непарного шелкопряда и хлопкового долгоносика).

Борат свинца Pb(BO2)2·H2O, нерастворимый белый порошок, используют для сушки картин и лаков, а вместе с другими металлами — в качестве покрытий стекла и фарфора.

Хлорид свинца PbCl2, белый кристаллический порошок, растворим в горячей воде, растворах других хлоридов и особенно хлорида аммония NH4Cl. Его применяют для приготовления мазей при обработке опухолей.

Хромат свинца PbCrO4 известен как хромовый жёлтый краситель, является важным пигментом для приготовления красок, для окраски фарфора и тканей. В промышленности хромат применяют в основном в производстве желтых пигментов.

Нитрат свинца Pb(NO3)2 — белое кристаллическое вещество, хорошо растворимое в воде. Это вяжущее ограниченного применения. В промышленности его используют в спичечном производстве, крашении и набивке текстиля, окраске рогов и гравировке.

Сульфат свинца PbSO4, нерастворимый в воде белый порошок, применяют как пигмент в аккумуляторах, литографии, в технологии набивных тканей.

Сульфид свинца PbS, чёрный нерастворимый в воде порошок, используют при обжиге глиняной посуды и для обнаружения ионов свинца.

Поскольку свинец хорошо поглощает γ-излучение, он используется для радиационной защиты в рентгеновских установках и в ядерных реакторах. Кроме того, свинец рассматривается в качестве теплоносителя в проектах перспективных ядерных реакторов на быстрых нейтронах. Электронная формула: 5s25p65d106s26p2, энергия ионизации (Pb → Pb+ + e−) равна 7,42 эВ. На внешней электронной оболочке находятся 4 неспаренных электрона (2 на p- и 2 на d-подуровнях), поэтому основные степени окисления атома свинца +2 и +4.

Соли двухвалентного свинца реагируют с щелочами, образуя почти нерастворимый гидроксид свинца:

При избытке щелочи гидроксид растворяется:

Реагирует со щелочами и кислотами:

Свинец образует комплексные соединения с координационным При комнатной температуре олово, подобно соседу по группе германию, устойчиво к воздействию воздуха или воды. Такая инертность объясняется образованием поверхностной пленки оксидов. Заметное окисление олова на воздухе начинается при температурах выше 150 °CПри нагревании олово реагирует с большинством неметаллов. При этом образуются соединения в степени окисления +4, которая более характерна для олова, чем +2. Олово медленно реагирует c концентрированной соляной кислотойОлово медленно реагирует c концентрированной соляной кислотойВ разбавленной серной кислоте олово не растворяется, а с концентрированной — реагирует очень медленно. Состав продукта реакции олова с азотной кислотой зависит от концентрации кислоты. В концентрированной азотной кислоте образуется оловянная кислота -SnO2·nH2O (иногда её формулу записывают как H2SnO3). При этом олово ведет себя как неметалл: При взаимодействии с разбавленной азотной кислотой олово проявляет свойства металла. В результате реакции образуется соль нитрат олова (II): При нагревании олово, подобно свинцу, может реагировать с водными растворами щелочей. При этом выделяется водород и образуется гидроксокомплекс Sn (II), например


Дата добавления: 2015-09-29; просмотров: 55 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Гексозомонофосфатный путь | Academic year 2012/2012 term of training duration: from 01. 03. 2012

mybiblioteka.su - 2015-2024 год. (0.021 сек.)