Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

17.Закон управления – это математическая зависимость, с помощью которой определяется регулирующее воздействие u(t) по сигналу рассогласования e(t) (рисунок10). По характеру изменения регулирующего



17. Закон управления – это математическая зависимость, с помощью которой определяется регулирующее воздействие u(t) по сигналу рассогласования e(t) (рисунок10). По характеру изменения регулирующего воздействия различают линейные и нелинейные, дискретные и непрерывные законы регулирования. В инженерной практике наибольшее применение имеют типовые линейные законы регулировании: пропорциональный (П), интегральный (И), пропорционально-интегральный (ПИ), пропорционально-интегрально-дифференциальный (ПИД). Регуляторы, работающие по этим законам, называют П-, И-, ПИ-, ПИД-регуляторами. Коэффициенты и постоянные времени, входящие в законы, называют параметрами настройки (уставками). Они позволяют обеспечить необходимый характер переходного процесса регулирования для объектов с различными динамическими свойствами. Кроме органов настройки, непосредственно воздействующих на параметры, входящие в закон регулирования, регуляторы имеют органы настройки, косвенно влияющие на режим работы САР, такие, как чувствительность регулятора и др.

18. Закон управления – это математическая зависимость, с помощью которой определяется регулирующее воздействие u(t) по сигналу рассогласования e(t) (рисунок10). По характеру изменения регулирующего воздействия различают линейные и нелинейные, дискретные и непрерывные законы регулирования. В инженерной практике наибольшее применение имеют типовые линейные законы регулировании: пропорциональный (П), интегральный (И), пропорционально-интегральный (ПИ), пропорционально-интегрально-дифференциальный (ПИД). Регуляторы, работающие по этим законам, называют П-, И-, ПИ-, ПИД-регуляторами. Коэффициенты и постоянные времени, входящие в законы, называют параметрами настройки (уставками).

П-регулятор по динамическим характеристикам является безинерционным звеном, коэффициент передачи которого Кр численно равен перемещению РО при единичном отклонении регулируемой величины от заданного значения, т.е. u(t) = Kp e(t), а передаточная функция W(p) = Kp, где Kp - коэффициент передачи.

Главным достоинством П-регуляторов является простота их реализации и настройки. При наличии возмущающих воздействий регулятор быстро приводит к в равновесное состояние почти любой объект.

И-регулятор по динамическим свойствам соответствует интегрального звену. Он перемещает РО пропорционально интегралу от отклонения регулируемой величины u(t) = Ks ∫ e(t)dt. Коэффициент передачи Кs равен скорости перемещения РО при отклонении регулируемой величины на единицу ее измерения. Интегральный регулятор перемещает РО до тех пор, пока регулируемая величина не достигнет заданного значения.



И-регуляторы способы устойчиво регулировать лишь объекты, обладающие самовыравниванием. Для них характерна относительно невысокая скорость регулирования.

19. ПИ-закон регулирования

Начало можно из 18 - го

Наиболее распространенным на практике является ПИ-регулятор, который обладает следующими достоинствами:

1.Обеспечивает нулевую статическую ошибку регулирования.

2.Достаточно прост в настройке, т.к. настраиваются только два параметра, а именно коэффициент усиления Кр и постоянная времени интегрирования Ti. В таком регуляторе имеется возможность оптимизации величины отношения Кр/Ti—min, что обеспечивает управление с минимально возможной среднеквадратичной ошибкой регулирования.

3.Малая чувствительность к шумам в канале измерения (в отличие от ПИД-регулятора).

 

20. ПИД-закон регулирования

Для наиболее ответственных контуров регулирования можно рекомендовать использование ПИД-регулятора, обеспечивающего наиболее высокое быстродействие в системе. Пропорционально-интегрально-дифференциальный (ПИД) регулятор — устройство в управляющем контуре с обратной связью. Используется в системах автоматического управления для формирования управляющего сигнала с целью получения необходимых точности и качества переходного процесса. ПИД-регулятор формирует управляющий сигнал, являющийся суммой трёх слагаемых, первое из которых пропорционально разности входного сигнала и сигнала обратной связи (сигнал рассогласования), второе — интеграл сигнала рассогласования, третье — производная сигнала рассогласования.

Однако следует учитывать, что это условие выполняется только при его оптимальных настройках (настраиваются три параметра).

С увеличением запаздывания в системе резко возрастают отрицательные фазовые сдвиги, что снижает эффект действия дифференциальной составляющей регулятора. Поэтому качество работы ПИД-регулятора для систем с большим запаздыванием становится сравнимо с качеством работы ПИ-регулятора.

Кроме этого, наличие шумов в канале измерения в системе с ПИД-регулятором приводит к значительным случайным колебаниям управляющего сигнала регулятора, что увеличивает дисперсию ошибки регулирования и износ исполнительного механизма.

Таким образом, ПИД-регулятор следует выбирать для систем регулирования, с относительно малым уровнем шумов и величиной запаздывания в объекте управления. Примерами таких систем является системы регулирования температуры.

 

21. В процессе разработки системы автоматического управления решаются две основные задачи:

1.Синтез корректирующего устройства, результатом которого является передаточная функция корректирующего устройства;

2.Техническая реализация корректирующего устройства.

Все системы автоматического управления в зависимости от варианта технической реализации блока управления (корректирующего устройства) можно подразделить на непрерывные и дискретные.

Системы, сигналы в которых существуют (могут быть измерены) в любой произвольный момент времени называются непрерывными системами.

Системы, сигналы в которых определены лишь в отдельные дискретные моменты времени, называются дискретными системами. Все системы, в состав которых входит ЭВМ, являются дискретными.

22. В зависимости от принадлежности источника энергии, при помощи которого создается управляющее воздействие, САУ могут быть прямого и непрямого действия. В системах прямого действия используется энергия управляемого объекта. В системах непрямого действия управляющее воздействие создается за счет энергии дополнительного источника.

По виду сигналов, действующих в системах, последние разделяют на непрерывные и дискретные. Дискретные системы, в свою очередь, разделяются на импульсные, релейные и цифровые.

САУ, у которых управляемая величина в установившемся режиме зависит от величины возмущающего воздействия, называются статическими, а САУ, у которых управляемая величина не зависит от возмущения, называются астатическими.

 

23. По своей структуре системы автоматического управления (САУ) подразделяются на одноконтурные и многоконтурные (рис. 1.1).

Одноконтурная система содержит регулятор и объект управления с передаточными функциями Wрег(p) и Wоу(p). Система обеспечивает стабилизацию регулируемой величины y(t) и обработку простейших типов воздействий g(t)при наличии возмущения; m(t). В функции регулятора входит преобразование информации об ошибке e=g-y в управляющий сигнал; u в соответствии с алгоритмом (законом) управления u=u(e).

Простейшим регулятором является пропорциональный регулятор (П-регулятор), для которого W(p)= KП, u(p)=KПe(p), u(t)=KПe(t).

Наиболее распространенным в электромеханических системах управления является пропорционально-интегральный закон управления (ПИ-регулятор), имеющий передаточную функцию следующего вида

и реализующий следующий закон управления

В сложных многоконтурных системах осуществляется обратная связь по нескольким составляющим вектора состояния объекта управле-ния Х, а также могут задаваться воздействия по составляющим вектора входного воздействия Q и вектора возмущения M (см. рис. 1.1,б).

a)

 

 

b)

 

Рис. 1.1. Структура одноконтурной(а) и многоконтурной(б) САУ.

24. Датчик - это первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину (давление, температуру, частоту, скорость, перемещение, напряжение, электрический ток и т.п.) в сигнал, удобный для измерения, передачи, преобразования, хранения и регистрации, а также для воздействия им на управляемые процессы. В соответствии с классификацией, принятой в Государственной системе приборов и средств автоматизации (ГСП), датчики относятся к техническим средствам сбора и первичной обработки контрольно-измерительной информации.

Промышленные датчики являются одними из основных элементов в устройствах дистанционных измерений, телеизмерений и телесигнализации, а также в системах регулирования и управления.

По физическому принципу работы датчики подразделяются на бесконтактные - индуктивные, емкостные, магнитные, оптические (фотоэлектрические), ультразвуковые, и на контактные, основными из которых являются энкодеры – устройства преобразующие угловые повороты или линейные перемещения в последовательность импульсов определенного формата.

По типу выхода датчики подразделяются на дискретные (выключатели), аналоговые и цифровые.

 

25. Мостовые измерительные схемы применяют постоянного и переменного тока. Существуют мостовые схемы уравновешенные и неуравновешенные схемы. Уравновешенные мосты требуют ручной или автоматической балансировки, в то время как неуравновешенные мосты не требуют

Уравновешенный мост представляет собой схему (Рисунок 34, а), состоящую из ромба, образуемого четырьмя сопротивлениями R1 R2, R3, Rt. Резисторы в схеме называют ветвями или плечами моста. Помимо этого в мостовую схему включены источник тока со своим сопротивлением RE и измерительный прибор с сопротивлением Rnp. В четырехугольнике также есть две диагонали, в одну из которых включен миллиамперметр, а в другую - источник тока. Для подстройки моста одно плечо (R3) является переменным сопротивлением.

Закон уравновешенного моста: произведение сопротивлений противолежащих плеч должны быть равны.

R1/R2=R3/Rt.или R1·Rt=R2·R3

Если необходимо вычислить неизвестное сопротивление датчика, то можно включить его в одно из плеч моста, вместо резистора R4· и воспользоваться формулой:

Rt=R2·R3/R1 [2.4]

Ток в диагонали моста, содержащей измерительный прибор, через напряжение питания:

Inp=U(R1Rt-R2R3)/M [2.5]

Основной характеристикой любой схемы является ее чувствительность. Она определяется как отношение приращения тока в измерительной диагонали ∆Inp к вызвавшему его изменению сопротивления одного из плеч моста:

Sсх =∆Inp /∆R [2.6]

∆Inp=U∆RRt/M [2.7]

где ∆Inp - результирующий ток в диагонали моста, содержащей измерительный прибор, A; U - напряжение питания, В; М - входное напряжение, В.

Неуравновешенный мост представляет собой схему (Рисунок 34, б), состоящую из ромба, образуемого четырьмя сопротивлениями R1 R2, R3, R5, Rt. Помимо этого в мостовую схему включены источник тока со своим сопротивлением RE и измерительный прибор с сопротивлением Rnp. Для подстройки моста одно плечо (R5) является переменным сопротивлением.

 

R5

 

 

б)

 

 

Рисунок 1 - Мостовые измерительные схемы а) уравновешенная; б) неуравновешенная

 

2. Компенсационные схемы используют для измерения неэлектрических величин, которые преобразуются датчиками в ЭДС или напряжение. Сигнал датчика сравнивается с компенсирующим напряжением, вырабатываемым потенциометром. Подбор компенсирующего напряжения выполняется вручную или автоматически.

 

Компенсационная схема с ручным уравновешиванием, представлена на рисунке 1, а. Измеряемая ЭДС Ех или напряжение Uх уравновешиваются напряжением Uк,снимаемым с резистора Rк, представляющего собой часть резистора R. Все сопротивление резистора R включено в цепь источника питания с ЭДС Е. Схема состоит из двух прямоугольников В нижней части находится датчик, имеющий сопротивление Rд. Резисторы в схеме называют ветвями или плечами моста. В состав схемы включен прибор, называемый нуль - индикатором (НИ), который служит для определения нулевого значения тока после компенсации.

Для поддержания стабильного тока питания I можно использовать регулировочный резистор Rрег и миллиамперметр или применить источник стабилизированного напряжения как в автоматическом потенциометре (Рисунок 1, б)

Дифференциальная схема - это гибрид мостовой и компенсационной схем. Состоит из двух смежных контуров с источником питания, а измерительный прибор включен в общую ветвь контуров и реагирует на разность контурных токов. В дифференциальной схеме могут быть использованы параметрические (с изменяющимся сопротивлением) и генераторные (с изменяющейся ЭДС) датчики.

Дифференциальная схема включения параметрических датчиков показаны на рисунке 36, а (датчик включен в один контур). Дифференциальная схема включения генераторного датчика показана на рисунке 36, б. В этой схеме датчиком является так называемый дифференциальный трансформатор.

Для расчета токов в дифференциальной схеме используют метод наложения: сначала определяют токи от одной ЭДС, а затем от другой.

 

26. Контрольно-измерительные приборы - устройства для получения информации о состоянии технологических процессов путем измерения их параметров (температур, давлений, расходов, уровней). К контрольно-измерительным приборам относятся первичные приборы и вторичные приборы. Вторичные приборы — устройства, воспринимающие сигналы от первичного прибора или передающего измерительного преобразователя и преобразующие его в форму, удобрю для восприятия информации диспетчером и обслуживающим персоналом. Они могут быть показывающими, регистрирующими (самопишущие, печатающие) и комбинированными. Вторичные приборы устанавливают на щитах и в шкафах в местах, наименее подверженных вибрации и влиянию электромагнитных полей.

 

27. Исполнительный элемент {исполнительное устройство) - функциональный элемент системы автоматического управления, осуществляющий воздействие на объект управления путем изменения потока энергии и потока материалов, поступающих на объект. Исполнительные элементы в основном бывают двух типов:

-с механическим двигателем (в частности, сервомотор, серводвигатель или сервопривод), в этом случае исполнительный элемент производит механическое перемещение регулирующего органа;

-с электрическим выходом, в этом случае воздействие, непосредственно прикладываемое к объекту регулирования, имеет электрическую природу.

Например, в регуляторе напряжения генератора постоянного тока регулирующим воздействием является напряжение возбуждения, получаемое от усилителя.

В зависимости от характера объекта и вида вспомогательной энергии, применяемой в системе автоматического управления, роль исполнительных элементов выполняют самые разные конструктивные элементы: электронные, электромашинные, магнитные или полупроводниковые усилители, реле, пневматические или гидравлические сервомоторы и др.

Динамические характеристики исполнительных элементов с механическим выходом отличаются значительно большей инерционностью, чем элементы с электрическим выходом. Часто исполнительные элементы второго типа служат приводом исполнительных элементов первого типа.

Требования к исполнительным элементам определяются характеристиками объекта регулирования и требуемым качеством процесса регулирования.

 

28. Регулирующий орган осуществляет регулирующее воздействие на объект изменением расхода вещества или энергии, подводимой к нему.Для изменения расхода жидкостей, газов и паров применяют дроссельные регулирующие органы. Их действие основано на изменении проходного сечения трубопровода в месте установки регулирующего органа. Проходное сечение дроссельного регулирующего органа изменяют, открывая или закрывая его. Расход вещества через такой регулирующий орган зависит от степени его открытия и перепада давлений на нем. Поэтому следует иметь в виду, что даже при одной и той же степени открытия дроссельного регулирующего органа расход через него может изменяться при изменении перепада давлений.К числу дроссельных регулирующих органов относятся одно-седельные, двухседельные и диафрагмовые клапаны, заслонки.Преимущество односедельного клапана перед двухседельным в том, что он обеспечивает при закрытии герметичное перекрытие трубопровода, в то время как у двухседельного невозможно обеспечить герметичную посадку в седла одновременно обоих плунжеров. С другой стороны, перепад давлений на клапане создает на плунжере односедельного клапана выталкивающее усилие, достигающее максимальной величины при полностью закрытом клапане. У двухседельного же клапана такие силы приложены к обоим плунжерам, но направлены в разные стороны. Поэтому результирующее усилие на штоке такого клапана даже при полном закрытии гораздо меньше, чем у односедельного, и для перемещения двухседельного клапана требуется исполнительный механизм меньшей мощности, чем для односедельного.Основной характеристикой дроссельного регулирующего органа как элемента АСР является его статическая (расходная) характеристика — зависимость расхода вещества через регулирующий орган (выходной сигнал) от степени его открытия (входной сигнал).

 

29. Любой процесс управления в каждый момент времени характеризуется одним или несколькими показателями, которые отражают физическое состояние управляемого объекта (температуру, скорость, давление, электрическое напряжение и т.п.). Эти показатели в процессе управления должны изменяться по какому-либо закона или оставаться неизменными при изменении внешних условий и режимов работы устройства.

Автоматическое обеспечение заданных значений параметров, определяющих необходимое протекание управляемого процесса, называется автоматическим регулированием. Параметры процесса, подлежащие заданным изменениям или стабилизации, называются регулируемыми параметрами.

Объект, в котором протекает управляемый процесс, называется объектом управления, а объект, в котором регулируются те или иные параметры, называется объектом автоматического регулирования.

Так, например, в автоматической системе регулирования температуры объектом регулирования является термостат, а регулируемым параметром, то есть регулируемой величиной, - температура в нем.

 

30. Преобразова́ние Лапла́са — интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией вещественного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.

Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями. Так, свёртка двух функций сводится в пространстве изображений к операции умножения, а линейные дифференциальные уравнения становятся алгебраическими.

Прямое преобразование Лапласа

Преобразованием Лапласа функции вещественной переменной, называется функция комплексной переменной [1], такая что:

Правая часть этого выражения называется интегралом Лапласа.

[править]

Обратное преобразование Лапласа

Обратным преобразованием Лапласа функции комплексного переменного, называется функция вещественной переменной, такая что:

Где — некоторое вещественное число

 

 

таблица преобразования Лапласа для некоторых функций.

 

31. Понятие устойчивости системы регулирования связано с ее способностью возвращаться в состояние равновесия после исчезновения внешних сил, которые вывели ее из этого состояния.

Понятие устойчивости можно распространить и на случай движения САР:

невозмущенное движение,

возмущенное движение.

Невозмущенное движение называется устойчивым по отношению к переменным xi, если при всяком заданном положительном числе A2, как бы мало оно ни было, можно выбрать другое положительное число l2(A2) так, что для всех возмущений ∆xi0, удовлетворяющих условию:

,

возмущенное движение будет для времени t T удовлетворять неравенству:

,

где: mi - коэффициенты, уравновешивающие размерности величин Dxi0.

Если с течением времени lim Δxi→0, то система ассимптотически устойчива.

 

32. Качество любой системы регулирования определяется величиной ошибки:

x(t)=g(t)−y(t)=Φx(p)g(t)

Но функцию ошибки x(t) для любого момента времени трудно определить, поскольку она описывается с помощью ДУ системы – Φx(p) – высокого порядка, и зависит от большого количества параметров системы. Поэтому оценивают качество САР по некоторым ее свойствам, определяют которые с помощью критериев качества.

Критериев качества регулирования много. Их разделяют на 4 группы:

Критерии точности – используют величину ошибки в различных типовых режимах.

Критерии величины запаса устойчивости – оценивают удаленность САР от границы устойчивости.

Критерии быстродействия – оценивают быстроту реагирования САР на появление задающего и возмущающего воздействий.

Интегральные критерии – оценивают обобщенные свойства САР: точность, запас устойчивости, быстродействие.

Существует два основных подхода к оценке качества:

Первый использует информацию о временных параметрах системы: h(t), w(t); расположение полюсов и нулей ПФ замкнутой системы Φ(s).

Второй использует информацию о некоторых частотных свойствах системы: полоса пропускания; относительная высота резонансного пика; и т.д.


Дата добавления: 2015-08-29; просмотров: 38 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Банковская система призвана обеспечить эффективность расчетов между хозяйствующими субъектами. Значительная часть расчетов носит межбанковский характер и служит для экономических связей | тройка

mybiblioteka.su - 2015-2024 год. (0.026 сек.)