Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Рассматривая криволинейное движение тела, мы видим, что его скорость в разные моменты различна. Даже в том случае, когда величина скорости не меняется, все же имеет место изменение направления



Рассматривая криволинейное движение тела, мы видим, что его скорость в разные моменты различна. Даже в том случае, когда величина скорости не меняется, все же имеет место изменение направления скорости. В общем случае меняются и величина, и направление ск
Автор:
Написал: Amro Дата: 23-Мар-2010

Рассматривая криволинейное движение тела, мы видим, что его скорость в разные моменты различна. Даже в том случае, когда величина скорости не меняется, все же имеет место изменение направления скорости. В общем случае меняются и величина, и направление скорости.


Рис. 49. Изменение скорости при криволинейном движении.


Таким образом, в криволинейном движении всегда имеется изменение скорости, т. е. это движение происходит с ускорением. Для определения этого ускорения (по величине и направлению) требуется найти изменение скорости как вектора, т. е. требуется найти изменение величины и изменение направления скорости.

Пусть, например, точка, двигаясь криволинейно (рис. 49), имела в некоторый момент скорость v1 а через малый промежуток времени — скорость v2. Изменение скорости есть разность между векторами v1 и v2. Так как эти векторы имеют различное направление, то нужно взять их векторную разность. Изменение скорости выразится вектором w, изображаемым стороной параллелограмма с диагональю v2 и другой стороной v1. Ускорением мы называем отношение изменения скорости к промежутку времени, за который это изменение произошло. Значит, ускорение а равно


Рис. 50. Ускорения при криволинейном движении всегда направлены в сторону вогнутости траектории.

 


Рис. 51. К выводу формулы для центростремительного ускорения.


Рассмотрим равномерное движение точки по криволинейной траектории. Мы уже знаем, что это — ускоренное движение. Найдем ускорение. Для этого достаточно рассмотреть ускорение для частного случая равномерного движения по окружности. Возьмем два близких положения А и В движущейся точки, соответствующие малому промежутку времени t (рис. 51, а). Скорости движущейся точки в А и В равны по величине, но различны по направлению.

Найдем разность этих скоростей, пользуясь правилом треугольника (рис. 51, б). Треугольники ОАВ и О\'А\'В\' подобны, как равнобедренные треугольники с равными углами при вершине. Длину стороны А\'В\', изображающей приращение скорости за промежуток времени t, можно положить равной at, где а — величина искомого ускорения. Сходственная ей сторона АВ есть хорда дуги АВ; вследствие малости дуги длина ее хорды может быть приближенно принята равной длине дуги, т. е. vt. Далее, 0\'A\'=0\'B\'=v; ОА= OB=R, где R — радиус траектории. Из подобия треугольников следует, что отношения сходственных сторон в них равны:




откуда находим искомое ускорение по величине:


Направление ускорения перпендикулярно к хорде АВ. Для достаточно малых промежутков времени можно считать, что касательная к дуге практически совпадает с ее хордой. Значит, найденное ускорение можно считать направленным перпендикулярно («нормально») к касательной к траектории, т. е. по радиусу, к центру окружности. Поэтому такое ускорение называют нормальным или центростремительным ускорением.

Если траектория — не окружность, а произвольная кривая линия, то в формуле (27.1) следует взять радиус окружности, ближе всего подходящей к кривой в данной точке. Направление нормального ускорения и в этом случае будет нормально к касательной к траектории в данной точке. Если при криволинейном движении ускорение постоянно по величине и направлению, его можно найти как отношение приращения вектора скорости к промежутку времени, за который это приращение произошло, каков бы ни был этот промежуток времени. Значит, в этом случае вектор ускорения можно найти по векторной формуле


аналогичной формуле (18.1) для прямолинейного движения с постоянным ускорением. Здесь v0 — вектор скорости тела в начальный момент промежутка времени t, a v — вектор скорости в конечный момент этого промежутка.

 

Тангенсальное и нормальное ускорения.

При прямолинейном движении векторы скорости и ускорения совпадают с направлением траектории. Рассмотрим движение материальной точки по криволинейной плоской траектории. Вектор скорости в любой точке траектории направлен по касательной к ней. Допустим, что в т.М траектории скорость была , а в т.М1 стала . При этом считаем, что промежуток времени при переходе точки на пути из М в М1 настолько мал, что изменением ускорения по величине и направлению можно пренебречь. Для того, чтобы найти вектор изменения скорости , необходимо определить векторную разность:

Для этого перенесем параллельно самому себе, совмещая его начало с точкой М. Разность двух векторов равна вектору, соединяющему их концы равна стороне АС МАС, построенного на векторах скоростей, как на сторонах. Разложим вектор на две составляющих АВ и АД, и обе соответственно через и . Таким образом вектор изменения скорости равен векторной сумме двух векторов:

По определению:

(1.15)

Тангенциальное ускорение характеризует быстроту изменения скорости движения по численному значению и направлена по касательной к траектории.

Следовательно

(1.16)

Нормальное ускорение характеризует быстроту изменения скорости по направлению. Вычислим вектор:

Для этого проведем перпендикуляр через точки М и М1 к касательным к траектории (рис. 1.4) Точку пересечения обозначим через О. При достаточно малом участок криволинейной траектории можно считать частью окружности радиуса R. Треугольники МОМ1 и МВС подобны, потому, что являются равнобедренными треугольниками с одинаковыми углами при вершинах. Поэтому:

или

Но , тогда:

Переходя к пределу при и учитывая, что при этом , находим:

,

(1.17)

Так как при угол , направление этого ускорения совпадает с направлением нормали к скорости , т.е. вектор ускорения перпендикулярен . Поэтому это ускорение часто называют центростремительным.

Полное ускорение определяется векторной суммой тангенциального нормального ускорений (1.15). Так как векторы этих ускорений взаимноперпендикулярны, то модуль полного ускорения равен:

(1.18)

Направление полного ускорения определяется углом между векторам и :

 


Дата добавления: 2015-08-29; просмотров: 41 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Переглянути у форматі pdf | Театр Содружество актёров Таганки,

mybiblioteka.su - 2015-2024 год. (0.014 сек.)