Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

5.1. Основные принципы проектирования рациональной системы разработки нефтяных месторождений.



5.1. Основные принципы проектирования рациональной системы разработки нефтяных месторождений.

Под системой разработки нефтяных месторождений понимают форму организации движения нефти в пластах к добывающим скважинам. Система разработки включает комплекс технологических и технических мероприятий, обеспечивающих управление процессом разработки залежей нефти и направленных на достижение высокой выработки запасов нефти из продуктивных пластов при соблюдении условий охраны недр. Система разработки нефтяных месторождений определяет: порядок ввода эксплуатационных объектов многопластового месторождения в разработку; сетки размещения скважин на объектах и их число; темп и порядок ввода их в работу; способы регулирования баланса и использования пластовой энергии. При этом системы разработки многопластовых месторождений и отдельных залежей отличаются между собой.

Для одного и того же месторождения можно назвать множество систем разработки, отличающихся по числу добывающих скважин, по их расположению, по методу воздействия на продуктивные пласты и т.д., поэтому возникает необходимость введения понятия рациональной системы разработки.

В качестве критериев рациональной системы разработки принимаются следующие основные положения:

1. Рациональная система разработки должна обеспечивать наименьшую степень взаимодействия между скважинами;

2. Рациональная система разработки должна обеспечить наибольший коэффициент нефтеотдачи;

3. Рациональная система разработки должна обеспечить минимальную себестоимость нефти.

Поэтому понятие рациональной системы разработки в окончательном виде формулируется так: рациональная система разработки должна обеспечить заданную добычу нефти при минимальных затратах и по возможности с наибольшими значениями коэффициентов нефтеотдачи.

Проектирование разработки заключается в подборе такого варианта, который бы отвечал требованиям рациональной системы разработки.

Обоснование рациональных систем разработки:

1) Обоснование рациональной системы разработки начинается с проведения геолого-разведочных работ на перспективной площади. Эти работы обычно завершаются подсчетом запасов нефти и попутного газа. Было доказано, что рациональное вложение средств в разработку будет обеспечено, если будут обеспечены запасы по категориям А+В+С1 (балансовые запасы).



В настоящее время ввод месторождений в разработку ведется по категорийности с запасами С1 иС2 в условиях лицензирования количество скважин уменьшается до единиц на залежах- спутниках.

В новых условиях задачи доразведки и уточнения запасов перекладывается на эксплуатационный фонд скважин (с применением детальной сейсмической съемки).

2) На основе геолого-промысловой информации создается геолого-математическая модель пласта ЭО.

3) На созданную модель накладываются технологические ограничения по дебитам и давлениям.

4) В многовариантном подходе к выбору сеток, режимов работы расчет технологических показателей на период 6-8 лет на перспективу.

5) Обоснование ТЭП по каждому варианту.

6) Выбор рационального варианта (утверждение варианта ЦКР и ТКР).

 

5.2. Основные принципы проектирования рациональной системы разработки газовых месторождений.

Под системой разработки газовых месторождений понимают форму организации движения газа в пластах к добывающим скважинам. Система разработки включает комплекс технологических и технических мероприятий, обеспечивающих управление процессом разработки залежей газа и направленных на достижение высокой выработки запасов газа из продуктивных пластов при соблюдении условий охраны недр. Система разработки газовых месторождений определяет: порядок ввода эксплуатационных объектов многопластового месторождения в разработку; сетки размещения скважин на объектах и их число; темп и порядок ввода их в работу; способы регулирования баланса и использования пластовой энергии. При этом системы разработки многопластовых месторождений и отдельных залежей отличаются между собой.

Для одного и того же месторождения можно назвать множество систем разработки, отличающихся по числу добывающих скважин, по их расположению, по методу воздействия на продуктивные пласты и т.д., поэтому возникает необходимость введения понятия рациональной системы разработки.

В качестве критериев рациональной системы разработки принимаются следующие основные положения:

1. Рациональная система разработки должна обеспечивать наименьшую степень взаимодействия между скважинами;

2. Рациональная система разработки должна обеспечить наибольший коэффициент газоотдачи;

3. Рациональная система разработки должна обеспечить минимальную себестоимость газа.

Поэтому понятие рациональной системы разработки в окончательном виде формулируется так: рациональная система разработки должна обеспечить заданную добычу газа при минимальных затратах и по возможности с наибольшими значениями коэффициентов газоотдачи.

Проектирование разработки заключается в подборе такого варианта, который бы отвечал требованиям рациональной системы разработки.

Обоснование рациональных систем разработки:

1) Обоснование рациональной системы разработки начинается с проведения геолого-разведочных работ на перспективной площади. Эти работы обычно завершаются подсчетом запасов газа. Было доказано, что рациональное вложение средств в разработку будет обеспечено, если будут обеспечены запасы по категориям А+В+С1 (балансовые запасы).

В настоящее время ввод месторождений в разработку ведется по категорийности с запасами С1 иС2 в условиях лицензирования количество скважин уменьшается до единиц на залежах- спутниках.

В новых условиях задачи доразведки и уточнения запасов перекладывается на эксплуатационный фонд скважин (с применением детальной сейсмической съемки).

2) На основе геолого-промысловой информации создается геолого-математическая модель пласта ЭО.

3) На созданную модель накладываются технологические ограничения по дебитам и давлениям.

4) В многовариантном подходе к выбору сеток, режимов работы расчет технологических показателей на период 6-8 лет на перспективу.

5) Обоснование ТЭП по каждому варианту.

6) Выбор рационального варианта (утверждение варианта ЦКР и ТКР).

 

5.3. Исходная геолого-физическая информация, необходимая для проектирования разработки нефтяных месторождений.

Выбор системы разработки месторождений углеводородов проводится на основе геолого-физических данных нефтяного или газового месторождения:

1) о выделении эксплуатационных объектов на многопластовом месторождении;

2) о необходимости применения метода искусственного воздействия на залежь или целесообразности разработки объекта с использованием природной энергии;

3) при необходимости — о методе воздействия и его оптимальной разновидности; о соответствующем взаимном размещении нагнетательных и добывающих скважин на площади:

4) о плотности сетки скважин;

5) о градиенте давления в эксплуатационном объекте;

6) о комплексе мероприятий по контролю и регулированию процесса разработки.

По каждому из названных пунктов должны приниматься решения, наиболее полно отвечающие геологической характеристике эксплуатационного объекта. При этом по одним пунктам рекомендации могут быть даны однозначно уже по данным промыслово-геологических исследований, по другим — могут быть предложены две-три близкие рекомендации. На этой основе специалистами в области технологии разработки месторождений выполняются гидродинамические расчеты нескольких вариантов системы разработки. Варианты различаются сочетанием рекомендаций по пунктам, обоснованных по геологическим данным. Из них выбирают оптимальный вариант, соответствующий требованиям, предъявляемым к рациональноной системе разработки.

 

 

 

5.4. Исходная геолого-физическая информация, необходимая для проектирования разработки газовых месторождений.

Выбор системы разработки месторождений углеводородов проводится на основе геолого-физических данных нефтяного или газового месторождения:

1) о выделении эксплуатационных объектов на многопластовом месторождении;

2) о необходимости применения метода искусственного воздействия на залежь или целесообразности разработки объекта с использованием природной энергии;

3) при необходимости — о методе воздействия и его оптимальной разновидности; о соответствующем взаимном размещении нагнетательных и добывающих скважин на площади:

4) о плотности сетки скважин;

5) о градиенте давления в эксплуатационном объекте;

6) о комплексе мероприятий по контролю и регулированию процесса разработки.

По каждому из названных пунктов должны приниматься решения, наиболее полно отвечающие геологической характеристике эксплуатационного объекта. При этом по одним пунктам рекомендации могут быть даны однозначно уже по данным промыслово-геологических исследований, по другим — могут быть предложены две-три близкие рекомендации. На этой основе специалистами в области технологии разработки месторождений выполняются гидродинамические расчеты нескольких вариантов системы разработки. Варианты различаются сочетанием рекомендаций по пунктам, обоснованных по геологическим данным. Из них выбирают оптимальный вариант, соответствующий требованиям, предъявляемым к рациональноной системе разработки.

5.5. Разработка нефтяных пластов в условиях водонапорного режима.

При водонапорном режиме основным видом энергии является напор краевой воды, которая внедряется в залежь и относительно быстро полностью компенсирует в объеме залежи отбираемое количество нефти и попутной воды. В процессе эксплуатации залежи в ее пределах происходит движение всей массы нефти. Объем залежи постепенно сокращается за счет подъема ВНК (рис.).

Рис. Пример разработки нефтяной залежи при природном водонапорном режиме:

а – изменение объема залежи в процессе; б – динамика основных показателей разработки. 1- интервалы перфорации; 2- нефть; 3-вода; 4- направление движения воды и нефти; положение ВНК: ВНКнач-начальное, ВНКк – конечное; давление: Рпл –пластовое, Рнас –насыщение; годовые отборы: qк – нефти, qж – жидкость; В – обводненность продукции; G – промысловый газовый фактор; kизвл.н-коэффициент извлечения нефти

 

При этом режиме с целью уменьшения отборов попутной воды из пласта в скважинах, пробуренных вблизи ВНК или в его пределах, нижнюю часть нефтенасыщенного пласта обычно не перфорируют.

Режим свойственен залежам, приуроченным к инфильтрационным водонапорным системам, при хорошей гидродинамической связи залежи с законтурной зоной пласта и с областью питания. Эти предпосылки обеспечиваются при следующих геологических условиях: больших размерах законтурной области; небольшой удаленности залежи от области питания: высокой проницаемости и относительно однородном строении пласта-коллектора как в пределах залежи, так и в водоносной области; отсутствии тектонических нарушений, затрудняющих движение воды в системе; низкой вязкости пластовой нефти; при небольших размерах залежи и соответственно умеренных отборах жидкости из продуктивного горизонта, благодаря чему они могут полностью компенсироваться внедряющейся в залежь водой. Одна из важнейших предпосылок действия водонапорного режима — значительная разница между начальным пластовым давлением и давлением насыщения, обеспечивающая в сочетании с другими факторами превышение текущего пластового давления над давлением насыщения на протяжении всего периода разработки и сохранение газа в растворенном состоянии.

Тесная связь поведения динамического пластового давления с величиной текущего отбора жидкости из пласта — относительно небольшое снижение его при увеличении отбора, неизменная величина при постоянном отборе, увеличение при уменьшении отбора, восстановление почти до начального пластового давления при полном прекращении отбора жидкости из залежи; область снижения давления обычно ограничивается площадью залежи;

практически неизменные на протяжении всего периода разработки средние значения промыслового газового фактора; достигаемый высокий темп годовой добычи нефти в период высокой стабильной добычи нефти, называемый II стадией разработки, — до 8—10% в год и более от начальных извлекаемых запасов (НИЗ); отбор за основной период разработки (за первые три стадии) около 85—90% извлекаемых запасов нефти;

извлечение вместе с нефтью в период падения добычи нефти попутной воды, в результате чего к концу разработки отношение накопленных отборов воды и нефти (водонефтяной фактор — ВНФ) может достигать 0,5—1.

При водонапорном режиме достигается наиболее высокий коэффициент извлечения нефти — до 0,6—0,7. Это обусловлено способностью воды, особенно пластовой минерализованной, хорошо отмывать нефть и вытеснять ее из пустот породы-коллектора, а также сочетанием исключительно благоприятных геолого-физических условий, в которых действует рассматриваемый режим. Водонапорным режимом характеризуются отдельные залежи в терригенных отложениях Грозненского района, Куйбышевской, Волгоградской и Саратовской областей и некоторых других районов.

 

5.6. Особенности разработки многопластовых залежей нефтяных месторождений.

В многопластовом месторождении выделяется несколько продуктивных пластов. Продуктивный пласт может разделяться на пропластки, прослои пород-коллекторов, которые развиты не повсеместно. Надежно изолированный сверху и снизу непроницаемыми породами отдельный пласт, а также несколько пластов, гидродинамически связанных между собой в пределах рассматриваемой площади месторождения или ее части, составляют элементарный объект разработки. Это понятие служит синонимом понятия залежь. Эксплуатационный объект (объект разработки) - это элементарный объект или совокупность элементарных объектов, разрабатываемых самостоятельной сеткой скважин при обеспечении контроля и регулирования процесса их эксплуатации. Эксплуатационные объекты выделяют на основе геологического, технологического и экономического анализов в период проектирования разработки. При решении вопросов выделения эксплуатационных объектов рекомендуется учитывать следующее: диапазон нефтегазоносности по разрезу (толщину продуктивного разреза); число продуктивных пластов в разрезе; глубину залегания продуктивных пластов; толщину промежуточных непродуктивных пластов и наличие зон слияния продуктивных пластов; положение водонефтяных контактов по пластам, совпадение залежей в плане; литологическую характеристику продуктивных пластов; коллекторские свойства (особенно проницаемостьи эффективную толщину), диапазон их изменения; различие типов залежей по пластам; режимы залежей и возможное их изменение; свойства нефтей в пластовых и поверхностных условиях; запасы нефти по пластам.

Если эти условия не препятствуют совмещению пластов в единый объект, то проводят гидродинамические расчеты по определению технологических показателей с учетом способов регулирования баланса пластовой энергии, контроля и регулирования процесса разработки, а также технических средств добычи нефти. Затем определяют экономическую эффективность различных вариантов сочетания отдельных пластов в эксплуатационные объекты. Научно обоснованное выделение эксплуатационных объектов служит важным рычагом экономии и повышения эффективности разработки.

В зависимости от порядка ввода эксплуатационных объектов в разработку выделяют две группы систем разработки многопластового нефтяного месторождения: системы одновременной разработки объектов; системы последовательной разработки объектов.

Системы одновременной разработки объектов. Преимущество систем одновременной разработки объектов-это возможность использования запасов всех объектов после их разбуривания. Реализовать эти системы можно по одному из вариантов:

1. Раздельная разработка, когда каждый объект эксплуатируется самостоятельной сеткой скважин. Требует большого числа скважин, что приводит к значительным капитальным вложениям. Может применяться при наличии высокопродуктивных объектов и возможности быстрого их разбуривания. Ее преимущество - обеспечение надежного контроля за процессом разработки и его регулирования.

2. Совместная разработка, при которой два или более пластов в иде единого эксплуатационного объекта разрабатываются единой сеткой добывающих и нагнетательных скважин.

Возможны ее подварианты: с увеличением числа добывающих скважин на малопродуктивные объекты и с увеличением числа нагнетательных скважин на малопродуктивные объекты. Ее преимущество - обеспечение высоких текущих уровней добычи при заданном числе скважин. Однако в основном наблюдается нерегулируемая разработка пластов, что приводит к ухудшению технико-экономических показателей.

3. Совместно-раздельная разработка, при которой добывающие скважины оборудуют установками для одновременно-раздельной эксплуатации, нагнетательные скважины - установками для одновременно-раздельной закачки воды. Она позволяет преодолеть недостатки первых двух вариантов, сохраняя при этом их преимущества.

Системы последовательной разработки объектов. Системы последовательной разработки объектов можно реализовать по следующим основным вариантам:

1. Разработка сверху вниз, при которой каждый нижележащий объект эксплуатируется после вышележащего. Она применялась в первый период развития нефтяной промышленности и в настоящее время признана в основном нерациональной, так какзадерживает разведку и разработку нижележащих объектов, увеличивает объем бурения и расход металла на обсадные трубы, повышает опасность нарушения правил охраны недр вышележащих объектов при разбуривании нижележащих объектов.

2. Разработка снизу вверх, при которой начинают разрабатывать объекты с нижнего, так называемого опорного (базисного) объекта, а затем переходят на возвратные объекты. При наличии многих объектов в качестве базисных также выбирают наиболее изученные и высокопродуктивные объекты с достаточно большими запасами нефти, а в качестве возвратных - остальные объекты. Тогда приступают к разработке базисных объектов, тем самым не задерживают эксплуатацию вышележащих высокопродуктивных объектов с большими запасами.

Следует отметить, что лучшие показатели могут быть достигнуты комбинацией всех перечисленных выше вариантов систем разработки многопластового месторождения.

 

 

5.7. Особенности разработки многопластовых залежей газовых месторождений.

Задача разработки существенно осложняется при необходимости отбирать газ из многопластового месторождения.

В этом случае приходится рассматривать очередность разработки отдельных пластов, распределение отборов, возможности и способы совместной эксплуатации различных объектов.

Многопластовые газовые месторождения могут быть подразделены на два основных вида: к первому относятся такие месторождения, в которых начальные пластовые давления в каждом из пластов примерно соответствуют давлению гидростатического столба воды; ко второму виду относятся те, в которых начальное давление в горизонтах отличается на давление, соответствующее весу столба газа. В этом случае единая залежь разделена но высоте перемычками, при помощи которых горизонты могут сообщаться или быть изолированными.

Эксплуатировать многопластовые месторождения можно раздельно скважинами, пробуренными на каждый горизонт, и скважинами, вскрывшими все продуктивные горизонты. При раздельной эксплуатации для экономии числа скважин часто осуществляют эксплуатацию при помощи разобщителей (пакеров). В этом случае газ из нижнего горизонта поступает в фонтанные трубы, а из верхнего горизонта — в затрубное пространство.

Многопластовые месторождения можно разрабатывать различными системами. Рассмотрим основные из них.

1. Вначале разрабатывают верхние горизонты, а в последующем — более глубокие. Эту систему разработки, называемую сверху — вниз, применяют в случае, если запасы верхних горизонтов и пластовые давления достаточны для обеспечения потребителей газом, а бурение нижних горизонтов связано со значительными капиталовложениями, техническими трудностями и прирост добычи с последних ожидается незначительный.

При этом следует изучать возможность использования эксплуатационных скважин верхнего горизонта для последующего добуривания их на нижележащие.

Иногда для второго вида многопластовых месторождений при наличии сверхдавлений, т. е. когда давление в верхних пластах выше гидростатического, а в нижних пластах приближается к гидростатическому, может быть также применена частичная система разработки сверху — вниз. В таких месторождениях обычно затруднена проходка скважин, так как требуется утяжеление глинистого раствора баритом или гематитом с целью предотвращения выбросов при вскрытии верхних горизонтов. Последующее вскрытие нижних горизонтов этим же раствором может привести к значительному поглощению глинистого раствора и засорению призабойной зоны. В результате резко ухудшится продуктивная характеристика и уменьшатся рабочие дебиты по скважинам, пробуренным на нижние горизонты.

В этом случае целесообразно иногда начинать эксплуатацию верхних горизонтов до снижения в них давления до гидростатического. Это позволит разбурить нижележащие горизонты без осложнений и приступить к разработке пласта без спуска дополнительной промежуточной обсадной колонны.

2. Вначале разрабатывают нижние горизонты, а затем верхние. Эту систему, называемую снизу — вверх, применяют обычно для первого вида многопластовых месторождений, т. е. когда запасы газа в нижних горизонтах значительно превышают запасы верхних горизонтов, а давление в верхних горизонтах недостаточно для обеспечения бескомпрессорной подачи газа потребителям. Кроме того, эту систему разработки можно применять для понижения давления в нижних горизонтах до давления, отличающегося от верхнего на вес столба газа, т. е. когда месторождение первого вида следует превратить во второй. После этого можно одновременно эксплуатировать верхние и нижние горизонты, что позволяет исключить переток газа из нижележащих горизонтов в вышележащие при последующей их разработке.

При разработке по системе снизу — вверх скважинами, вначале эксплуатировавшими нижние пласты, после цементирования в них низа колонны и последующей перфорации или после установки пакеров можно также эксплуатировать верхние горизонты.

3. Одновременная система разработки верхних и нижних горизонтов может быть осуществлена как раздельной эксплуатацией скважин с каждого горизонта, так и совместной эксплуатацией с применением пакеров или без них в одной скважине. Эта система позволяет получить требуемое количество газа с наименьшим числом скважин.

Разработка скважинами всех горизонтов наиболее удобна для месторождений второго вида. Систему эксплуатации ряда горизонтов в одной скважине можно применять в случае когда состав газа по различным горизонтам не отличается по со-держанию сероводорода и когда крепость пород и их коллекторские свойства также примерно одинаковы, что не приводит к резкому различию предельно допустимых депрессий по отдельным горизонтам и выходу из строя большенства скважин вледсвие быстрого обводнения одного из горизонтов.

При отсутствии изложенных условий такая эксплуатация ряда горизонтов в одной скважине может оказаться невыгодной.

Например, в верхнем пласте могут быть получены высокие дебиты при высоких депрессиях на пласт, так как пласт представлен крепкими породами. Нижний пласт сложен рыхлыми породами и может эксплуатироваться только при небольших депрессиях. Эксплуатация этих двух горизонтов в одной скважине приведет к тому, что нельзя будет допустить высокие депрессии, так как произойдет разрушение нижнего пласта, а следовательно, и не будет эффекта от эксплуатации их в одной скважине без разделения.

При эксплуатации в одной скважине одновременно нескольких горизонтов месторождений первого вида, когда давления отличаются между собой на давление гидростатического столба воды, может возникнуть переток газа из одних горизонтов в другие. При остановке скважины также будет наблюдаться переток газа. Поэтому во время эксплуатации без разобщения ряда горизонтов в одной скважине с целью получения наибольшего дебита следует учитывать все факторы в данных конкретных условиях.

Одновременная разработка с пакерами или отдельными скважинами позволяет широко использовать эжекцию газа для повышения давления газа, полученного из пластов с низким давлением.

Выбор системы разработки зависит от многих факторов: давления, запасов газа, параметров пласта, продвижения вод и допустимых рабочих дебитов с отдельных горизонтов, а также от состава газа. Если в одних пластах содержится в газе сероводород, а в других он отсутствует, то для транспортировки газа с сероводородом и без него нужны отдельные газосборные сети. Если в верхних пластах содержится сухой газ, а в нижних значительное количество конденсата, то условия эксплуатации каждого горизонта будут различными.

Выбор системы разработки определяется, исходя из технико-экономических показателей с учетом потребности в газе данного района.

Для решения задачи разработки группы газовых месторождений или многопластовых месторождений приходится строить электрические и гидродинамические модели, использовать современную вычислительную технику. В данной постановке после установления отборов газа по отдельным залежам, периодов нарастающей, постоянной и падающей добычи приступают к выбору оптимального варианта разработки путем проведения соответствующих гидро-, газо- и термодинамических расчетов и анализа полученных результатов.

Условия движения газа и соответственно уравнения, его описывающие, различны в отдельных звеньях этой системы. В связи с этим газогидродинамические расчеты сводятся к совместному решению дифференциальных уравнений, описывающих движение газа и воды в пласте, приток газа к отдельным скважинам, течение газа по стволу скважины и в газосборной системе, а также в аппаратах очистки, осушки и учета газа.

 

5.8. Методы и средства контроля и регулирования разработки нефтяных и нефтегазовых залежей.

На основе анализа разработки нефтяного месторождения и выявления расхождений проектных и фактических показателей разработки осуществляют мероприятия по приведению в соответствие фактического хода разработки с проектным. Совокупность этих мероприятий и является регулированием разработки нефтяного месторождения, которое можно проводить чисто технологическими методами без изменения или с частичным изменением системы разработки.

К числу технологических методов регулирования разработки нефтяных месторождений относят следующие.

1. Изменение режимов эксплуатации добывающих и нагнетательных скважин путем уменьшения или увеличения их дебитов и расходов закачиваемых в пласты веществ, вплоть до прекращения эксплуатации (отключения) скважин.

2. Общее и, главным образом, поинтервальное воздействие на призабойную зону скважин с целью увеличения притока нефти из отдельных прослоев пласта или расхода закачиваемых в них веществ.

3. Увеличение давления нагнетания в скважинах вплоть до давления раскрытия трещин в призабойной зоне, поинтервальная закачка рабочих агентов в прослои пласта при дифференцированном давлении нагнетания.

4. Применение пакерного оборудования и проведение работ по капитальному ремонту с целью изоляции отдельных прослоев пласта без изменения принятых по последнему проектному документу объектов разработки.

5. Циклическое воздействие на пласт и направленное изменение фильтрационных потоков.

К методам регулирования, связанным с частичным изменением системы разработки месторождения, относят:

1) очаговое и избирательное воздействие на разрабатываемые объекты путем осуществления закачки в пласт веществ через специально пробуренные отдельные нагнетательные скважины-очаги или группы нагнетательных скважин, через которые осуществляется выборочное воздействие на отдельные участки пластов;

2) проведение работ по капитальному ремонту скважин или установка в скважинах пакерного оборудования с целью частичного укрупнения или разукрупнения, т. е. изменения объектов разработки.

Рассмотрим циклические методы воздействия на пласт и методы направленного изменения фильтрационных потоков, используемые при разработке заводняемых нефтяных месторождений, поскольку суть всех остальных методов регулирования либо ясна из предыдущих лекций настоящего курса, либо излагается в курсе технологии и техники добычи нефти.

Технология циклического воздействия на пласт заключается в периодическом изменении дебитов добывающих скважин и расходов закачиваемой воды в нагнетательные скважины на каком-либо достаточно крупном участке месторождения или на месторождении в целом. Направленное изменение фильтрационных потоков проводят путем изменения режимов работы отдельных групп добывающих и нагнетательных скважин с целью ускорения продвижения водонефтяного контакта по тем линиям движения, по которым он до этого продвигался медленно, и, наоборот, замедления его перемещения в других направлениях.

Циклическое воздействие на пласт часто осуществляют путем периодического изменения режимов работы только нагнетательных скважин при постоянном режиме эксплуатации добывающих скважин для поддержания добычи жидкости на высоком уровне. При этом темп нагнетания воды в пласты всего месторождения также периодически изменяется, колеблясь около среднего проектного уровня. Периоды колебания темпа закачки в пласт воды (циклы) в зависимости от фильтрационных свойств месторождений составляют обычно от недель до месяцев.

Периодическое изменение режимов работы скважин и текущих объемов жидкостей, закачанных и отбираемых из пласта, вызывает изменение давления. В соответствии с теорией упругого режима перераспределение пластового давления происходит быстрее в высокопроницаемых пропластках или в трещинах.

В цикле повышения давления возникают перетоки веществ из высокопроницаемых в низкопроницаемые области пласта.

Если породы-коллекторы низкопроницаемых участков пласта гидрофильные, что часто бывает, то в них преимущественно проникает вода, вытесняя нефть.

В цикле снижения давления вода удерживается капиллярными силами в низкопроницаемых породах, а нефть перетекает в высокопроницаемые пропластки и трещины, поскольку в них происходит быстрее не только повышение, но и снижение давления. Перетоки нефти из низкопроницаемых пород в высокопроницаемые области пласта при циклическом воздействии способствуют общему увеличению нефтеотдачи пласта.

Направленное изменение фильтрационных потоков неразрывно связано с циклическим воздействием на пласт. Однако оно приводит и к дополнительному эффекту, связанному с «вымыванием» нефти из областей пласта, где до изменения направлений потоков градиенты давления и скорости фильтрации были низкими.

Проведение указанных мероприятий по регулированию разработки нефтяных месторождений связано с дополнительными, по сравнению с проектными, текущими и капитальными затратами.

Если приведенные затраты на регулирование разработки месторождения находятся в пределах 10 – 20 % от суммарных приведенных затрат и если эти затраты не возрастают с течением времени, а процесс разработки удовлетворяет задаче оптимального развития — добычи нефти в стране в целом, то ориентировочно можно считать, что в дальнейшем разработку следует продолжать по принятому проектному документу. В противных случаях ставится вопрос о подготовке нового проектного решения о разработке месторождения.

 

5.9. Современные методы увеличения нефтеотдачи пластов.

+

5.10. Современные методы увеличения газоотдачи пластов.

Задача повышения нефтеотдачи пластов состоит в повышении степени извлечения нефти из пористой среды. Около половины нефти находящейся в пласте остается не поднятой на поверхность. Это обусловлено

1) Характеристиками коллектора, его неоднородностью;

2) Свойствами пластового флюида;

3) Особенностями геологического строения месторождения;

4) Технологией и техникой добычи нефти;

5) Многими другими факторами

В настоящее время известно большое число методов увеличения нефтеотдачи (МУН) пластов. Они различаются по типу используемой энергии, методу воздействия, характеру взаимодействия между фазами.

Классификация технологий воздействия на нефтяные и газовые пласты:

1) Первичные – в их основе использование естественных режимов разработки;

2) Вторичные – на основе методов заводнения пластов;

3) Третичные – на основе применения химических реагентов и физических полей.

По применяемым средствам методы интенсификации притоков нефти, газа и газового конденсата могут быть разделены на следующие:

1) уточняющие системы разработки (уплотнение сетки скважин, группирование объектов и пластов);

2) гидродинамические (циклические, изменение направления потоков, изменение депрессии в добывающих или нагнетательных скважинах);

3) технические (гидроразрыв, горизонтальные и наклонно-направленные скважины, зарезка боковых стволов, перфорация, условия бурения);

4) химические (ПАВ, полимеры, щелочи, кислоты, эмульсии, соли, гели, ШФЛУ, силикаты);

5) газовые (углекислый, углеводородный и дымовой газы, азот, водогазовые смеси, пены, термонеустойчивые агенты);

6) тепловые (горячая вода, пар, горение, термогенерирующие агенты);

7) физические (магниты, вибротехнологии, электровоздействие);

8) биологические (на основе биотехнологий);

9) комбинированные.

Область эффективного применения каждого из методов зависит от геолого-физических свойств коллекторов, физико-химических свойств насыщающих их жидкостей, стадии и состояния разработки залежей.

Успешность внедрения на каждом конкретном месторождении МУН зависит от правильности его выбора, который должен осуществляться на основе критериев применимости. Критерии применимости методов разрабатываются на основе:

1) анализа результатов лабораторных и

2) теоретических исследований,

3) предыдущего опыта работы.

Успешность проведения обработок по Западной Сибири:

1) Солянокислотных обработок – 64 %.

2) Растворителями – 61 %

3) Поверхностно-активными веществами – 53 %

4) Гидравлический разрыв пласта – 60-80 %

 

 

 


Дата добавления: 2015-08-29; просмотров: 154 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Солдат, присвистывая, шел по улицам ферроматской столицы. Денек был неплохой, сегодня он ну, назовем это «заработал» неплохую сумму, и теперь направлялся в ближайшую пивную, попутно раскуривая | 

mybiblioteka.su - 2015-2024 год. (0.044 сек.)