Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Эксплуатационные характеристики ограждающих конструкций



Эксплуатационные характеристики ограждающих конструкций

Функция ограждающих конструкций - поддерживать внутри здания заданный температурно-влажностный режим, который влияет на комфортность проживания и зависит от теплотехнических свойств строительного материала, из которого выполнены ограждающие конструкции.

Ограждающие конструкции - многофункциональные и многоэлементные системы. Их функции обеспечиваются определенными свойствами материалов и конструкций: теплозащита - теплопроводностью и теплоемкостью; водозащита - воздухопроницаемостью, герметичностью узлов и стыков конструкций; звукозащита - звукопоглощением и звуконепроницаемостью; физико-механические свойства - долговечность стенового ограждения. Кроме того, ограждающие конструкции выполняют архитектурную функцию, которая связана с приданием поверхности ограждающих конструкций заданной формы и цветовой гаммы.

Изменение во времени свойств материала ограждающих конструкций приводит не только к нарушению тепловлажностного режима помещений, но и повреждению конструкций, снижению их несущей способности и долговечности. Недостаточная теплоизоляция стен способствует увеличению влажности, которая, конденсируясь и распространяясь на несущие конструкции, приводит к изменению их физико-механических свойств.

Наружные стены должны обеспечивать не только защиту от проникновения атмосферной влаги, но и свободную диффузию водяных паров из внутренних помещений в наружную среду. Важнейшее условие нормального режима состоит в том, чтобы атмосферная влага, конденсат и диффузия паров имели возможность испаряться во внешнюю среду. Эффективность защиты от переувлажнения атмосферными осадками имеет свои положительные и отрицательные аспекты. Для стен с различными видами наружной отделки динамика влагопереноса зависит от многих факторов. Так, защита в виде штукатурного покрытия способствует постоянному накоплению влаги, в то время как для стен без наружной отделки влага быстро отдается наружу. Такое явление особенно ярко проявляется для стеновых ограждений из пористого материала (газосиликата, газо- и пенобетона). Устройство покрытий из керамической плитки препятствует попаданию атмосферных осадков, но не обеспечивает миграции влаги из помещений.

Скорость водоотдачи зависит от паропроницаемости материала конструкции и от упругости пара. При нанесении на наружную штукатурку ограждения защитного слоя краски или облицовочной плитки снижается паропроницаемость, что приводит к конденсации воды под изоляционным слоем и разрушению поверхностных слоев при цикличном воздействии отрицательных температур.



Жидкая и газообразная фазы атмосферной влаги воздействуют на ограждающие конструкции под действием капиллярных сил, ветрового напора, градиента давления и проникают во внутренние слои, что приводит к увеличению влажности материала и ухудшению теплотехнических и прочностных свойств.

Эксплуатационные качества несущих и ограждающих конструкций в значительной степени зависят от величины деформаций. Их суммарные параметры являются следствием возрастания вертикальных нагрузок в период возведения и длительных процессов усадки и ползучести в окончательно сформированной системе здания. Вторая составляющая полных деформаций может превышать расчетные значения первой.

Определяющее влияние на эксплуатационные характеристики зданий оказывают температурно-влажностные деформации. При перепадах температур наблюдаются перемещения в горизонтальной и вертикальной плоскостях. Наиболее опасными для панельных зданий являются деформации, вызванные перепадом температур по сечению стен. Деформированное состояние панели представляется в виде сферы, выгнутой в сторону нагреваемой поверхности. Наличие напряжений растяжения в нагреваемом слое и сжатия в ненагреваемом вызывает деформации и напряжения, которые могут превышать предел прочности материала, что приводит к трещинообразованию. Циклические воздействия постоянно увеличивают число трещин и ширину их раскрытия.

Эксплуатационные показатели зданий значительно ухудшаются в связи с возникновением отказов в результате инфильтрации воздуха под действием градиента давления между наружной и внутренней средами. Основным полем воздухопроницаемости в помещение являются стыки панелей и примыкания оконных и балконных заполнений. Воздухопроницаемость значительно повышается при изменении свойств герметиков в результате их старения и для домов первых массовых серий выше нормативных значений в несколько раз. Это обстоятельство создает дополнительный инфильтрационный тепловой поток, нарушая комфорт помещений.

Важное значение для воздухозащиты помещений имеет правильная технология установки окон и балконных заполнений, т.к. теплопотери через их примыкания достигают до 50 % общих. Увеличение герметичности окон должно повышаться с ростом этажности зданий. Так, для зданий высотой до 17 этажей герметичность должна быть повышена в 2-3 раза по сравнению с пятиэтажными.

Большое влияние на процесс воздухообмена оказывают вентиляционные системы и системы инженерного оборудования (лифтовые шахты, мусоропроводы). Отклонения от проектных решений приводят к интенсивному воздухообмену, что незамедлительно сказывается на температурно-влажностном режиме жилых помещений.

В то же время недостаточный воздухообмен приводит к ряду негативных явлений.

Так, опыт эксплуатации санированных панельных жилых зданий в Германии показал, что около 30 % квартир подвержены образованию грибковой плесени. Основная причина интенсивного роста грибковых колоний состоит в недостаточном воздухообмене при утеплении фасадов панельных домов. Применение герметичных окон и стремление снизить энергозатраты за счет сокращения вентиляционных потерь существенно повышают влажность воздуха. Другой причиной служат ошибки в проектах, способствующие возникновению мостиков холода, что при повышенных влажности и температуре внутренней поверхности наружной стены являются причиной выпадения конденсата. Достаточно высока вероятность появления конденсата в угловых комнатах, что связано с аэродинамическим эффектом, способствующим более эффективной теплоотдаче и снижению теплоизоляционных свойств материала.

Важным условием комфортного проживания является показатель звукоизоляционных свойств конструкций. Изоляция смежных помещений оценивается звукоизолирующей способностью разделяющих ограждений и интенсивностью передачи звука прямым и косвенным путями. В этом плане большое влияние оказывают архитектурно-планировочные решения, материал разделительных стен и перекрытий, а также конструктивное решение узлов и примыкающих элементов. Звукоизолирующие качества конструкций со временем эксплуатации ухудшаются в результате изменения их физико-механических характеристик: упругости, деформативности, образования и раскрытия трещин.

Особое влияние на виброакустические параметры помещений оказывают структурные шумы и вибрации, которые передаются по каркасу стен и перекрытий. Основным методом борьбы с ними является создание узлов с демпфилирующими прокладками, обеспечивающими гашение колебаний, разрезных конструктивных систем с виброизоляцией, плавающих полов и т.п.

Наибольшая дискомфортность жилых помещений появляется в результате воздействия воздушных шумов от автомобильного и других видов транспорта. Она определяется интенсивностью движения и удаленностью зданий от основных магистралей. Снижение этого воздействия осуществляется методами звукоизоляции поверхности стен, устройством 3-слойного или пакетного остекления, снижение воздействия звуковых колебаний достигается путем посадки шумозащитных зеленых насаждений и возведения специальных отражающих барьеров.

В соответствии с нормами МГСН 2.04-97 «Допустимые уровни шума, вибрации и требования к звукоизоляции в жилых и общественных зданиях» активизируется борьба с воздушными и ударными шумами методами строительной физики.

При выполнении реконструктивных работ необходимо учитывать процессы и явления, направленные на повышение технической и эксплуатационной надежности зданий, снижение вредного воздействия окружающей среды, применение энергосберегающих конструкций, эффективных материалов и технологий, существенно оздоровляющих условия комфортного проживания.

Повышение энергоэффективности ограждающих конструкций

Энерго- и ресурсосбережение являются главными направлениями технической политики в различных отраслях производства.

На диаграмме рис. 8.1 приведены усредненные значения получаемой энергии топлива на различных технологических этапах и потери при транспортировании, генерации, коммуникации и в жилищно-коммунальном хозяйстве. Анализ графика показывает, что максимальные потери наблюдаются в секторе ЖКХ. Это обстоятельство ставит задачу резкого снижения энергозатрат в первую очередь за счет максимального исключения теплопотерь при строительстве нового и эксплуатации старого жилого фонда.

Рис. 8.1. Потери полезной энергии топлива на различных технологических этапах

В энергосбережении большое значение отводится повышению теплозащиты ограждающих конструкций. Сравнение видов потребления энергии показывает, что на жилищно-коммунальное хозяйство расходуется около 117 млн. т усл.т., из которых 75 - на отопление, что составляет около 43 % общего расхода энергии.

Анализ существующего положения в строительном секторе показал, что вновь построенные жилые здания в средней полосе России расходуют на нужды отопления многоквартирных зданий от 350 до 800 кВт×ч/м2. В целом по РФ расходы на отопление составляют 55 кг усл. т/м2 в год и на горячее водоснабжение - 19 кг усл. т/м2, т.е. суммарно 74 кг усл. т/м2 в год. Для сравнения: в ФРГ расходуют 260 кВт×ч/м2 в год, Швеции и Финляндии - 135 кВт×ч/м2 в год. Или, если сравнивать по расходу условного топлива, то в ФРГ - 34 кг усл. т/м2 в год, Швеции - 18 кг усл.т/м2 в год, что в 2,0-2,5 раза превышает средние показатели по РФ.

Следует отметить, что с 1986 года нормативы по теплозащите зданий в нашей стране не менялись, в то время как западные страны за этот период времени несколько раз ужесточали требования.

На рис. 8.2 приведены сведения о динамике изменения теплопроницаемости стен на примере европейских стран. Резкий скачок в сторону энергоснабжения приходится на период энергетического кризиса 1970-1980-х годов. Начиная с этого периода ведется планомерная работа по увеличению термического сопротивления ограждающих конструкций и, как следствие, достигнуто существенное снижение энергозатрат.

Рис. 8.2. Динамика изменения сопротивления теплоотдачи для ряда европейских стран и РФ в соответствии с действующими нормами
1 - Россия; 2 -Франция; 3 - Германия; 4 -Нидерланды; 5 - Великобритания; 6 -Швеция; 7 - Норвегия; 8 - Дания

Для уменьшения неоправданно большого эксплуатационного энергопотребления зданий Госстроем РФ введены новые нормативы, которые предусматривают снижение энергопотребления на 20-40 % путем увеличения до 3,5 раза сопротивления теплопередаче стеновых конструкций и снижения теплопотерь различных конструктивных элементов. Особое место в решении данной проблемы отводится не только новому строительству, но и эксплуатируемому и реконструируемому жилому фонду.

Актуальность проблемы энергосбережения повышается при реформе жилищно-коммунального хозяйства, когда уменьшается или прекращается дотация государства на содержание жилых зданий.

Снижение энергопотребления может быть решено комплексом архитектурно-планировочных приемов путем повышения теплотехнических характеристик ограждающих конструкций, сверхпрозрачных элементов, совершенствования вентиляционных систем, использования отопительных систем с управляемыми тепловыми режимами и др. решениями.

Для повышения энергоэффективности зданий требуется комплексный подход, учитывающий все источники теплопотерь. Поэтому выполнение неполного цикла работ по теплоизоляции, например, только стенового ограждения, не может привести к положительным результатам. На рис. 8.3 приведены диаграммы теплопотерь через различные конструктивные элементы зданий, что подтверждает необходимость комплексного подхода в решении данной проблемы.

Рис. 8.3. Распределение теплопотерь через различные конструктивные элементы

Особенностью новых нормативных положений является то обстоятельство, что приведенное сопротивление теплопередаче ограждающих конструкций следует принимать в зависимости от градусо-суток отопительного периода, но не менее Rотр,которое определяется из санитарно-гигиенических и комфортных условий R 0 ³ Rотр

Величина ГСОП (градусо-сутки отопительного периода) зависит от климатических условий местности и определяется по зависимости ГСОП = (t вtот.перZот.пер, где t в- расчетная температура внутреннего воздуха согласно СНиП 31-01-2003 «Здания жилые многоквартирные», t в=18 °С при расчетной температуре наружного воздуха до -30 °С, t в = 20 °С при расчетной зимней температуре наружного воздуха от -31 °С и ниже; tот.пер - средняя температура периода со среднесуточной температурой воздуха t £ 8 °С; Zот.пер - продолжительность периода (в сутках) со среднесуточной температурой воздуха t £8 °С.

Требуемое сопротивление теплопередаче различных ограждающих конструкций R 0 при выполнении реконструктивных работ определяется в зависимости от величины ГСОП.

В новых нормативах ограничен температурный перепад для зданий различного назначения и конструктивных элементов.

При выборе конструктивной схемы ограждающих конструкций учитывается коэффициент теплотехнической однородности.

Внесены новые требования по ограничению воздухопроницаемости ограждающих конструкций.

В результате использования новых конструктивных решений оконных заполнений и балконных дверей приведенное сопротивление теплоотдаче должно находиться в определенных пределах. Выполнение комплекса нормативных требований позволит не только повысить комфортность проживания жильцов, но и обеспечить существенное снижение эксплуатационных расходов на отопление, которое, по данным Госстроя РФ, составит до 40 % нынешнего потребления.

Методика теплотехнического расчета осуществляется как для многослойных конструкций, определяется требуемая толщина теплоизоляционного слоя dут при заданных теплоизоляционных свойствах материалов и конструктивных слоев где - требуемое приведенное сопротивление теплопередаче стен; r -коэффициент теплотехнической однородности; R l,…, Rn - термическое сопротивление конструктивных слоев; lв, lн - нормируемые коэффициенты теплоотдачи внутренней и наружной поверхностей.

Для проверки правильности принятой толщины утепленного слоя dут выбирается фрагмент стены с проемом, и для него определяется приведенное сопротивление теплопередаче. Фрагмент стены разбивается на участки. Для каждого участка определяется приведенное сопротивление теплопередаче с учетом влияния включений с различными термическими сопротивлениями (перемычек, противопожарных рассечек, оконных откосов и т.п.):

Для полного фрагмента стены

где S F -площадь фрагмента стены за вычетом проемов; F 1, F 2, ..., Fn - площади участков фрагмента стены; F 01, F 02,..., F 0 n - приведенные сопротивления теплопередаче участков фрагмента стены; п - число участков.

Если то конструкция стены считается удовлетворяющей требованиям строительной теплоизоляции.

 


Дата добавления: 2015-08-28; просмотров: 86 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
F3: Тестовые задания для контроля остаточных знаний студентов по дисциплине Эксплуатация и ремонт | Характеристики ВАЗ Приора Седан

mybiblioteka.su - 2015-2024 год. (0.018 сек.)