Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Лекция № Тема: Обмен углеводов и жиров.



Лекция № Тема: Обмен углеводов и жиров.

План:

1. ОСНОВНЫЕ ЭТАПЫ УГЛЕВОДНОГО ОБМЕНА.

2. РЕГУЛЯЦИЯ УГЛЕВОДНОГО ОБМЕНА.

3. ЛИПИДНЫЙ ОБМЕН.

4. ОСНОВНЫЕ ЭТАПЫ ЛИПИДНОГО ОБМЕНА.

5. РЕГУЛЯЦИЯ ЛИПИДНОГО ОБМЕНА.

 

Различают простые и сложные углеводы. Сложные углеводы, или полисахариды, состоят из остатков большого количества молекул простых углеводов – моносахаридов. Биологическое значение углеводов заключается, прежде всего, в обеспечении энергетического обмена, так за счет углеводного обмена на 60...75 % обеспечивается потребность организма в энергии. Прежде всего, глюкоза, служит непосредственным источником клеточной энергии.

Углеводы — наиболее легко мобилизуемые источники энергии, особенно это проявляется при функционировании мышечной ткани, где энер­гетическая обеспеченность сокращений определяется анаэробным и аэробным распадом углеводов.

Анаэробный путь окисления углеводов (т.е. без кислорода) энергетически менее выгоден, чем аэробное их окисление. При аэробном распаде углеводов конечными продуктами являются Н2О и СО2. При этом полностью освобождается заключённая в углеводах энергия, которая в основном накапливается в высокоэргических связях АТФ.

При анаэробном расщеплении углеводов в ходе многоступенчатого процесса, как промежуточное вещество образуется молочная кислота, которая далее окисляется в

аэробных условиях до Н2О и СО2, либо снова превращается в гликоген.

Исключительно важны для функционирования клетки и хранения генетической информации дезоксирибоза и рибоза, являющиеся также углеводами, а мукополисахариды, мукопротеиды, гликопептиды являются структурными компонентами клеток и их оболочек. Вместе с этим, обладая высокой осмотической активностью, угле­воды (главным образом глюкоза) участвуют в организации транспортных процессов, поддерживают тонус клеток.

Уровень глюкозы в крови — важ­ный гомеостатический фактор:

у жвачных животных ее концен­трация составляет 0,4 - 0,6 г/л,

у моногастричных — 1,0 - 1,6 г/л,

а у птиц значительно выше до 3 г/л.

Превышение этих уровней приводит к удалению излишних углеводов с мочой. При сниже­нии концентрации сахара в крови из-за дефицита энергетически важного метаболита нарушается работа ЦНС и развиваются судо­роги, сменяющиеся коматозным состоянием.

 

1. ОСНОВНЫЕ ЭТАПЫ УГЛЕВОДНОГО ОБМЕНА.



Первый этап. Пищеварительные процессы, связанные с гидролизом углеводов, начинаются уже в ротовой полости т.к. в слюне содержаться амилолитические ферменты. В содержимом желудка амилазы слюны инактивируются. Дальнейшее более пол­ное переваривание углеводов осуществляется уже в тонком ки­шечнике под действием амилаз, поступающих в двенадцатиперст­ную кишку из поджелудочной железы. В тонких кишках переваривание и всасывание углеводов происходят интенсивнее, чем в ротовой по­лости. Мальтоза пищи расщепляются до глюкозы мальтазой, выделяемой как поджелудочной железой, так и клетками кишечного эпителия. Получен­ные в ходе ферментативного расщепления моносахариды, попав­шие в организм моногастричных животных в виде полисахаридов (крахмала, гликогена), транспортируются в кровь и с кровотоком по воротной вене поступают в печень.

Только жвачные животные способны переваривать в ходе симбионтного пищеварения клетчатку — полисахарид, определяющий механическую прочность стеблей растений. Животные не вырабатывают собственных целлюлозолитических ферментов и вынуждены использовать для процессов пищеварения ферменты простейших и микроорганизмов. Процесс расщепления полисахаридов у жвачных не заканчивается на стадии моносахаридов. Как поступившие с кормом, так и образованные после расщепления полисахаридов моно-, ди- и олигосахариды в анаэробных условиях рубца сбраживаются до ЛЖК летучих жирных кислот (уксусной, пропионовой, масляной, которые всасываются в стенке рубца), метана и диоксида углерода. Летучие жирные кис­лоты используются в метаболических реакциях для образования энергии, синтеза глюкозы и жира, образования кетоновых тел молочного жира. Из глюкозы и дисахаридов простейшие рубца синтезируют полисахариды, причем синтез микробиального и инфузориального крахмала во многом определяется рационом. Этот процесс наряду с образованием легко утилизируемого за­паса углеводов служит и для предотвращения избыточного брожения в рубце. Связывая субстраты, участвующие в бродильных про­цессах, иммобилизация сахаров предотвращает образование из­лишнего тепла и газов. В сычуге простейшие и микроорганизмы погибают под действием соляной кислоты и, поступая в тонкий кишечник, перевариваются протеолитическими и амилолитическими ферментами с освобождением сахара, поступающего в кровоток. Аналогичные процессы преобразования полисахаридов растений с участием микроорганизмов происходят в толстом отде­ле кишечника лошади.

Второй этап. Промежуточный обмен углеводов начина­ется в печени, куда из сосудов кишечника кровь, содержащая глюкозу, поступает в первую очередь. Важно отметить, что печень активно участвует в процессах регуляции уровня глюкозы в крови: при излишке связывает, т.е. обеспечивает запасание углево­дов в виде гликогена (гликогенез), а при недостатке происходит распад гликогена до сво­бодной глюкозы (гликогенолиз). Ключевым ферментом в этом процессе является глюкозо-6-фосфатаза, которая обеспечивает об­разование глюкозы из глюкозо-6-фосфата при распаде гликогена. Наряду с этими процессами обмен углеводов включает окисление глюкозы с выделением энергии, использование глюкозы в каче­стве сырья для синтеза неуглеводов — белков и жиров. Глюкоза участвует также и в синтезе некоторых специфических углеводов, необходимых для осуществления особых функций организма. На­пример, из глюкозы образуется глюкуроновая кислота — важное соединение, обеспечивающее детоксикационную функцию пече­ни. И наконец, в печени возможно и новообразование углеводов из продуктов распада жиров и белков (глюконеогенез).

В углеводном обмене организма большое участие принимает мышечная ткань: во время мышечной активности мускулатура ак­тивно захватывает значительное количество глюкозы. Вместе с этим мышцы, как и печень, способны накапливать углеводы в виде гликогена. При распаде гликогена (гликогенолиз) выделяется энергия, необходимая для мышечного сокращения, но образую­щийся глюкозо-6-фосфат не способен преобразоваться в глюкозу из-за отсутствия фермента глюкозо-6-фосфатазы, и расщепление продолжается до стадии пировиноградной и молочной кислот (гликолиз). В период отдыха в мышце происходит ресинтез глико­гена из молочной кислоты, а часть молочной кислоты, попадая в кровь, вызывает гиперлакцидемию, требующую расходования ще­лочных резервов крови и обусловливающую режим гипервентиля­ции легких для ликвидации «кислородной задолженности» и уст­ранения ацидоза.

У жвачных глюкоза всасывается из желудочно-кишечного тракта незначительно. В основном потребности организма покры­ваются благодаря процессам глюконеогенеза, причем глюкоза мо­жет синтезироваться из пропионата, некоторых белков, молочной кислоты и глицерина. Наряду с традиционными для всех видов животных путями использования глюкозы, заключающимися в обеспечении работы центральной нервной системы и скелетной мускулатуры, у жвачных глюкоза необходима для синтеза лактозы, липидов (в том числе и молочного жира), питания плода и белко­вого синтеза. В синтезе лактозы участвует до 62 % всей поступаю­щей в молочную железу глюкозы.

Глюкоза служит главным источником энергии для плода, который использует около 70 % всей поступаю­щей глюкозы, причем утилизация глюкозы в материнском орга­низме снижается в результате своеобразного диабетоподобного влияния прогестерона.

Третий этап. Конечными продуктами углеводного обме­на являются диоксид углерода и вода, которые выделяются из организма при работе легких и почек.

2. РЕГУЛЯЦИЯ УГЛЕВОДНОГО ОБМЕНА.

Постоянство содержания глюкозы в крови обеспечивается нервно-гуморальными механизмами, т.е. ЖВС, которые под контролем ЦНС регулируют ассимиляцию и диссимиляцию углеводов. Ещё в 1853г. Клод Бернар установил участие Н.С. в углеводном обмене, так при уколе в дно 4 мозгового желудочка в продолговатом мозге, происходит мобилизация гликогена, в крови резко повышается содержание сахара и в моче также появляется сахар – “сахарный укол”. Кроме ЦНС в регуляции обмена углеводов участвует и вегетативная Н.С., а именно волокна симпатической Н.С. регулируют распад гликогена до глюкозы, а парасимпатической – наоборот, его образование из глюкозы.

Так гормональная регуляция углеводного обмена осуществляется за счет функционирования островковой ткани поджелудочной же­лезы, которая продуцирует инсулин — гормон, вырабатываемый бета-клетками островков Лангерганса. Инсулин стимулирует синтез фермента гексокиназы, который катализирует образование глюкозо-6-фосфата, который поступ­ает из крови в клетки печени и скелетной мускулату­ры, и используется на синтез гли­когена. Воздействуя на жировую ткань, инсулин стимулирует пре­вращение глюкозы в жир, который может быть использован как источник энергии, т. е. способствует ее резервированию. Одновре­менно с этим тормозится процесс новообразования глюкозы (глюконеогенез). В результате под действием инсулина в крови быст­ро снижается концентрация сахаров (гипогликемия), что опасно в первую очередь для головного мозга. Но имеется физиологический антаго­нист инсулина глюкагон, вырабатываемый альфа-клетками остров­ковой ткани, активирует гликогенолиз, в ходе которого разруша­ется гликоген, и свободная глюкоза поступает в кровь.

Адрена­лин — гормон мозгового вещества надпочечника, как и глюкагон, активируя фосфорилазу, это фермент, который ускоряет распад гликогена в печени, одно­временно в мышечной ткани усиливается распад гликогена, в ре­зультате этого в крови поднимается концентрация глюкозы и молоч­ной кислоты.

Гормон аденогипофиза — адренокортикотропный гор­мон (АКТГ) влияет на углеводный обмен опосредованно, изменяя уровень секреции глюкокортикоидов — гормонов коркового вещества надпочечников. Глюкокортикоиды значительно усиливают глюконеогенез (образования сахара из неуглеводов), как результат концентрация глюкозы в крови повышается. В мышцах и не­которых других органах начинается распад белка, освобождаю­щиеся аминокислоты после дезаминирования используются для образования глюкозы.

Соматотропный гормон (СТГ) уменьшает утилиза­цию глюкозы периферическими тканями и одновременно усиливает распад жира для обеспечения процессов глюконеогенеза.

 

Гормоны щитовидной железы — тироксин и трийодтиронин, усиливают потребление тканями сахара в пределах физиологической нормы, но повышение количества гормонов, т.е. при гипертиреозе тормозит окислительное фосфорилирование углеводов и в крови резко повышается концентрация глюкозы.

При гипогликемии — снижении уровня глюкозы ниже нижнего предела нормы — активируются нейроны гипоталамической области. Прежде всего возбуждаются центры симпатико-адреналовой системы, в результате чего вырабатывается адреналин, а в печени и мышечной ткани происходит распад гликогена. Выде­ляющаяся в процессе гликогенолиза глюкоза поступает в кровь, а выделенная из мышц молочная кислота восполняет запасы пече­ночного гликогена. Аналогичным, глюкозомобилизующим дейст­вием обладают глюкагон, СТГ и глюкокортикоиды.

Наиболее мощ­ным фактором, противодействующим повышению уровня глюкозы в крови, служит инсулин, который выделяется при повышении концентрации глюкозы в крови либо под влиянием парасимпати­ческого отдела вегетативной нервной системы, обеспечивающего контроль за островковой тканью поджелудочной железы.

3. ЛИПИДНЫЙ ОБМЕН.

Биологическое значение липидов весьма многообразно: от энергетического обеспечения жизнедеятельности до важных плас­тических функций (построения клеточных структур) и образования физиологически активных веществ. Основную массу липидов в организме животных составляют нейтральные жиры, представ­ленные главным образом триглицеридами. Являясь важным ис­точником энергии [при окислении 1гжира выделяется 38,97 кДж (9,3 ккал), что обеспечивает до 50 % энергетических трат взросло­го организма], отложенные в жировых «депо» триглицериды могут служить в качестве долгосрочного пищевого и энергетического за­паса организма. Вместе с этим нейтральные жиры используются организмом как источник эндогенной воды: при сгорании 100 г жира освобождается 107 мл воды. Это демонстративно проявляет­ся в биологических возможностях животных, приспособленных к обитанию в пустыне, у которых во время длительных переходов в безводной местности жир (у верблюда отложенный в горбах) слу­жит резервом энергии и источником воды. У некоторых видов жи­вотных (морские и полярные) слой нейтрального жира покрывает тело и служит биологической термоизолирующей системой, обес­печивающей сохранение теплоты в организме. Отложения нейт­рального жира обволакивают органы и ткани, сосуды и нервы, предохраняя их от травматических воздействий окружающей сре­ды. Особо нежный по структуре и консистенции жир заполняет глазничную впадину, защищая от механических воздействий слож­ный оптический прибор — глаз. Различают белую и бурую жиро­вую ткань, которые существенно различаются по своей метаболи­ческой активности. Клетки бурой жировой ткани содержат ис­ключительно большое количество митохондрий, причем цвет ее определяется цитохромами (железосодержащие пигменты), состав­ляющими важную часть окислительной ферментативной системы митохондрий. Бурая жировая ткань характерна для эмбриональ­ного и раннего постнатального периода, а также для взрослых животных, впадающих в спячку, так как ткань, богатая митохонд­риями, выполняет важную роль в поддержании температурного гомеостаза. Кроме того, нейтральные жиры служат растворителя­ми некоторых витаминов (А, D, Е, К).

Липопротеиды — комплекс липидов с белками, служа­щий дополнительным резервом богатых энергией метаболитов. Циркулирующие в лимфе и крови липопротеиды под действием липопротеиновои липазы могут распадаться до жирных кислот и включаться в обменные процессы.

Фосфолипиды (фосфатиды) — сложные липиды, в мо­лекулах которых присутствует остаток фосфорной кислоты. Это сложные эфиры фосфорной кислоты и глицерина или амино-спирта сфингозина, которые посредством эфирной или амидной связи соединены с остатками насыщенных и ненасыщенных жир­ных кислот. Наличие полярных и неполярных группировок в мо­лекулах фосфолипидов обусловливает своеобразие физико-хими­ческих свойств и их специфическую роль в построении клеточных мембран. Синтез фосфолипидов происходит из нейтральных жиров, фосфорной кислоты и в большинстве случаев азотистого ос­нования холина. Образование холина регулируется поступлением из пищи метионина — аминокислоты, служащей донатором ме­тальных групп.

Стероиды — полициклические соединения, подразделяю­щиеся на стерины, витамины группы D, желчные кислоты и спир­ты, стероидные алкалоиды и стероидные гормоны.

Холестерин — вещество из группы стеринов (тетрацик-лический, ненасыщенный спирт). Холестерин совместно с фосфолипидами является важным структурным компонентом био­логических мембран и участвует в синтезе необходимых для функционирования организма гормонов надпочечника, половых желез и также витамина D3. В основном холестерин синтезиру­ется печенью и только 20 % его поступает с продуктами питания. В печени эндогенный и поступивший извне холестерин вклю­чается в состав альфа- и бета-липопротеидов — комплексных соединений липидов с белками, которые переносятся с током крови к различным тканям. Наибольшее количество холестерина содержится в надпочечниках, мозге и периферических нервах. Неиспользованный в метаболических реакциях холестерин в пе­чени распадается с образованием желчных кислот, а часть холес­терина из крови поступает через стенку толстого кишечника и включается в состав каловых масс. При нарушении холестерино­вого обмена холестерин и его эфиры откладываются в клетках активной мезенхимы, звездчатых клетках печени, эндотелии и подэндотелиальном слое кровеносных сосудов, коже. Следстви­ем нарушения холестеринового обмена могут быть атероскле­роз сосудов, образование холестериновых камней в желчных пу­тях. При дефиците холестерина нарушаются структура клеточ­ных мембран, особенно в клетках нервной системы, и синтез стероидных гормонов.

Стероидные гормоны — физиологически активные вещества стероидной природы (кортикостероиды, половые гормо­ны, прогестины) синтезируются из холестерина в коре надпочеч­ников, клетках Лейдига, в фолликулах и желтом теле яичников, в плаценте при процессах гидроксилирования в митохондриях и микросомальной фазе цитоплазмы. В связи с высокой липо-фильностью стероидные гормоны относительно свободно диф­фундируют через плазматические мембраны в кровь, проникают в клетки-мишени, где связываются с соответствующим внутрикле­точным рецептором.

Гликолипиды — сложные липиды, не содержащие фос­фор, в состав которых входит галактоза. К ним относятся цереброзиды и ганглиозиды, присутствующие в значительных количествах в мозговой ткани и клетках крови. Физиологическое значение этих соединений заключается в приобретении клетками централь­ной нервной системы особых свойств. Располагаясь во внешнем слое плазматической мембраны, цереброзиды и ганглиозиды концентрируются в области синапсов. Кроме того, установлена их роль в иммунохимических процессах связывания вирусов с клеточной мембраной.

4. ОСНОВНЫЕ ЭТАПЫ ЛИПИДНОГО ОБМЕНА.

Первый этап. Пищеварительный этап начинается уже в желудке: воздействие липаз на эмульгированный жир (липиды молока). Основные пищеварительные процессы, обеспечивающие использование пищевых жиров, осуществляются в тонком кишеч­нике. Под влиянием желчных кислот происходит эмульгирование, благодаря этому они становятся доступны липазам. В результате ферментативного расщепления триглицериды корма распадаются на глицерин и жирные кислоты. Желчные кислоты, образуя с жир­ными кислотами водорастворимые комплексы (холеинаты), дела­ют возможным проникновение последних в клетки кишечного эпителия, где могут ресинтезироваться триглицериды или образо­вываться фосфолипиды. Ресинтезированные в кишечной стенке триглицериды и хиломикроны (частицы эмульгированного жира диаметром 0,5 мкм) поступают в лимфатические сосуды ворсинок кишечника, которые сливаются в грудной лимфатический про­ток. Грудной лимфатический проток, сливаясь с задней полой ве­ной, обеспечивает поступление хиломикрон в малый круг крово­обращения, где они и задерживаются в ткани легкого. В легких хиломикроны постепенно подвергаются действию липаз: состав­ляющие их ингредиенты используются в метаболизме как самого легкого, так и всего организма. Кроме хиломикрон в кровоток по­ступают жирные кислоты, которые через воротную вену достига­ют печени и участвуют в метаболических реакциях.

Особенность пищеварительного этапа липидного обмена у жвачных состоит в том, что жиры корма — триглицериды, фосфатиды, эфиры холестерина и широко представленные в зеленых кормах моно- и дигалактозилглицериды быстро расщепляются микроорганизмами рубца, а высвобождающиеся глицерин и га­лактоза сбраживаются до летучих жирных кислот, которые всасы­ваются в рубце. Возможен также и синтез микробиальных липидов Рубцовыми микроорганизмами (бактериями и инфузориями), которые включают в состав собственных липидов пальмитино­вую, стеариновую и олеиновую кислоты.

Второй этап. Промежуточный обмен липидов происхо­дит в печени, жировой ткани и клетках различных органов, при­чем он тесно связан с углеводным обменом. При нормальном питании в организме депонируется от 10 до 20 % жира в качест­ве резервуара энергии и структурного компонента тела. Жировая ткань — это не просто депо жира, в ней постоянно происходят интенсивные процессы обмена в виде отложения жира в форме триглицерида (липогенез) и распада триглицеридов с освобождени­ем неэтерифицированных жирных кислот (липолиз). Располага­ясь вокруг кровеносных сосудов и пропуская через себя вещества, с избытком поступающие из пищеварительного тракта и легко диффундирующие из сосудов, жировая ткань поглощает трудно-хранимые и высокогидрируемые соединения (ацетат, бета-окси-бутират), превращая их в легкохранимые и почти безводные жир­ные кислоты и триглицериды. Они могут храниться неограничен­ное время и в неограниченном количестве, а при необходимости использоваться как резервная энергия. Объем жировой ткани оп­ределяется не количеством клеток, а их размерами. В зависимости от наполненности жиром различают веретенообразные клетки, не содержащие жира, и мелковакуолистые, наполненные жиром, — адипоциты. Капли триглицерида в цитоплазме адипоцита могут быть весьма большого размера, вплоть до того, что жир оттесняет цитоплазматические структуры на периферию и клетка приобре­тает «перстневидную» форму. Освобождение жирных кислот и их окисление используются организмом для покрытия энергетичес­ких расходов. В печени образуются и кетоновые тела (ацетоуксусная и бэта-оксимасляная кислоты, ацетон), служащие источником энергии, но при нарушении межуточного обмена липидов воз­можно повышение уровня кетоновых тел (гиперкетонемия) и вы­деление их с мочой (кетонурия).

Третий этап. Конечными продуктами липидного обмена являются диоксид углерода и вода, так как под действием липаз нейтральные жиры расщепляются до глицерина и жирных кислот, а уж затем освобождается углерод. Продукты неполного окисления жиров, кетоновые тела, могут наряду с участием в энергетическом метаболизме и использованием в качестве предшественников мо­лока выводиться из организма почками и легкими.

 

5. РЕГУЛЯЦИЯ ЛИПИДНОГО ОБМЕНА.

Процесс отложения жира и его мобилизации из жировых депо с последующим использованием в тканях осуществляется по прин­ципу саморегуляции. Повышенный уровень глюкозы в крови за­держивает распад триглицеридов и активирует их синтез, напротив, при снижении ее концентрации усиливается расщепление жиров и в кровь поступают неэтерифицированные жирные кислоты. Син­тез — мобилизационный цикл в жировых депо организма коор­динируется физиологическим состоянием животного, характером кормления и регулируется нейроэндокринной системой.

В соответствии с учением И. П. Павлова пищевой центр, от­ветственный за поглощение пищи, извлечение из нее питательных веществ, их использование и запасание, представляет собой функциональное объединение клеток, располагающихся в различ­ных отделах головного мозга, коре больших полушарий, под­корковых структурах и стволовой части мозга. Взаимодействие между этими группами нейронов обеспечивает адекватную ре­акцию на различные метаболические ситуации и формирование пищевых мотиваций.

Особую роль играют нейроны заднего гипоталамуса в вентро-латеральных и вентромедиальных ядрах. Разрушение вентролатеральных ядер приводит к афагии — потере аппетита, отказу от пи­щи вплоть до смерти от истощения. Разрушение вентромедиальных ядер, напротив, вызывает длительное пищевое возбуждение. Жи­вотные поедают необычно большие количества пищи, у них разви­вается ожирение, которое обусловлено не только повышенным по­ступлением метаболитов углеводно-жирового обмена, но и усилен­ным переходом углеводов в жиры. Прямое нервное влияние на процессы липидного обмена проявляется во взаимоисключающем воздействии симпатического и парасимпатического отделов вегета­тивной нервной системы: импульсы, передаваемые по симпатичес­ким нервам, тормозят синтез триглицеридов и усиливают их распад (липолиз). Повышение тонуса парасимпатического отдела способ­ствует депонированию жира даже в условиях голодания. Так, при перерезке чревного (симпатического) нерва в околопочечной клет­чатке сохраняется больше жира на денервированной стороне. На­ряду с симпатическими нервами выраженным жиромобилизуюшим влиянием обладают гормоны мозгового вещества надпочечника — адреналин и норадреналин.

Под действием соматотропного гормона процессы клеточной пролиферации сопровождаются значительными энергетически­ми затратами: в период роста интенсивно расходуются запасен­ные, депонированные вещества за счет интенсификации липолиза. Аналогичным действием обладает и гормон щитовидной же­лезы тироксин: при гипертиреозе наблюдается значительное ис­худание, а при гипофункции гипофиза и щитовидной железы развивается ожирение. Адренокортикотропный гормон (АКТГ) влияет опосредованно: воздействуя на синтез и выделение глюкокортикоидов, он способствует повышению содержания глюкозы в крови за счет мобилизации внутриклеточных запасов в ходе глюконеогенеза.

Утилизации углеводов за счет их поглощения клеткой и отло­жения в виде гликогена и триглицеридов способствует инсулин. Аналогичным действием обладает и пролактин — гормон перед­ней доли гипофиза. Нервные и гормональные факторы постоянно взаимодействуют, обеспечивая соответствие между процессами мобилизации и депонирования жира, но при нарушении механиз­мов контроля быстро наступают патологические изменения — ожирение или исхудание. Ожирение прежде всего связано с из­лишним, превышающим энергетические траты организма, поступлением пищи (алиментарное) либо с недостаточным использова­нием жира как источника энергии при понижении мышечной на­грузки организма или дефиците жиромобилизующих гормонов. Ожирение может быть вызвано усиленным переходом углеводов в жиры, как следствие избыточной продукции инсулина и пролак­тина, или наследственной аномалией обмена веществ. Истощение развивается при недостаточном поступлении пищи, когда приход питательных веществ не покрывает энергетические траты орга­низма, либо оно является следствием длительного жиромобилизующего действия симпатического отдела вегетативной нервной си­стемы или соответствующих гормонов.


 

 


Дата добавления: 2015-08-28; просмотров: 149 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Аннотация: Майк МакЭван – обычный десятиклассник, который хорошо учится и любит играть в баскетбол. Но его жизнь переворачивается с ног на голову, когда однажды он замечает, как у новенькой девочки | От всей души поздравляет с наступающими Новогодними праздниками и дарит Вам скидку на покупку ювелирных украшений:

mybiblioteka.su - 2015-2024 год. (0.024 сек.)