Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Электрический заряд, ток, их физическая природа. 5 страница



Говоря о видах трансформаторов, нельзя не рассказать об электронном трансформаторе. Электронный трансформатор представляет собой специализированный источник питания, который служит для преобразования напряжения 220В в 12 (24)В, при большой мощности. Электронный трансформатор намного меньше обычного, при тех же самых параметрах нагрузки.

 

Уравнения идеального трансформатора

 

Для того чтобы рассчитать основные характеристики трансформаторов, принято пользоваться простыми уравнениями, которые знает каждый современный школьник. Для этого используют понятие идеального трансформатора. Идеальным трансформатором называется такой трансформатор, в котором нет потерь энергии на нагрев обмоток и вихревые токи. В идеальном трансформаторе энергия первичной цепи превращается полностью в энергию магнитного поля, а затем – в энергию вторичной обмотки. Именно поэтому мы можем написать:
P1= I1*U1 = P2 = I2*U2,
где P1, P2 – мощности электрического тока в первичной и вторичной обмотке соответственно.

 

 

Магнитопровод трансформатора

Магнитопровод представляет собой пластины из электротехнической стали, которые концентрируют в себе магнитное поле трансформатора. Полностью собранная система с деталями, скрепляющими трансформатор в единое целое – это остов трансформатора. Та часть магнитопровода, на которой крепятся обмотки, называется стержнем трансформатора. Часть магнитопровода, которая не несет на себе обмотку и замыкает магнитную цепь, называется ярмом.

В трансформаторе стержни могут располагаться по-разному, поэтому выделяют такие четыре типа магнитопроводов (магнитных систем): плоская магнитная система, пространственная магнитная система, симметричная магнитная система, несимметричная магнитная система.

 

Обмотка трансформатора

Теперь поговорим об обмотке трансформатора. Основная часть обмотки – виток, который однократно обхватывает магнитопровод и в котором индуцируется магнитное поле. Под обмоткой понимают сумму витков, ЭДС всей обмотки равна сумме ЭДС в каждом витке.

В силовых трансформаторах обмотка обычно состоит из проводников, имеющих квадратное сечение. Такой проводник по-другому еще называется жилой. Проводник квадратного сечения используется для того, чтобы более эффективно использовать пространство внутри сердечника. В качестве изоляции каждой жилы может использоваться либо бумага, либо эмалевый лак. Две жилы могут быть соединены между собой, и иметь одну изоляцию – такая конструкция называется кабелем.



Обмотки бывают следующих типов: основные, регулирующие и вспомогательные. Основной называется обмотка, к которой подводится или от которой отводится ток (первичная и вторичная обмотка). Обмотка с выводами для регулирования коэффициента трансформации напряжения называется регулирующей.

 

Применение трансформаторов

 

Из курса школьной физики известно, что потери мощности в проводах прямо пропорциональны квадрату силы тока. Поэтому для передачи тока на большие расстояния напряжение повышают, а перед подачей потребителю наоборот, понижают. В первом случае нужны повышающие трансформаторы, а во втором – понижающие. Это основное применение трансформаторов.

Трансформаторы применяются также в схемах питания бытовых приборов. Например, в телевизорах применяют трансформаторы, имеющие несколько обмоток (для питания схем, транзисторов, кинескопа, и т.д.).

26. Способы регулирования оборотов эл. Двигателя

Регулирование скорости вращения электрических двигателей постоянного тока можно производить путем изменения напряжения, подводимого к двигателю, или путем изменения величины магнитного потока двигателя.

Изменение величины напряжения, подводимого к якорю двигателя, можно производить путем включения последовательно с якорем двигателя переменного регулировочного сопротивления или путем последовательного и параллельного включения обмоток якорей нескольких двигателей. Наиболее часто для регулирования скорости применяют способ изменения величины магнитного потока двигателя. Для этой цели в цепь обмотки возбуждения двигателя включают реостат, дающий возможность производить широкую и плавную регулировку скорости двигателя.

Регулирование скорости вращения асинхронных двигателей производится одним из следующих способов.

1. Изменение числа полюсов электродвигателя. Для возможности изменения числа пар полюсов двигателя статор его выполняют либо с двумя самостоятельными обмотками, либо с одной обмоткой, которую можно пересоединять на различные числа полюсов. Пересоединение обмоток статора производится при помощи специального аппарата – контроллера. При этом способе регулировка скорости вращения двигателя совершается скачками. Регулировку скорости вращения двигателя путем изменения числа полюсов можно производить только у асинхронных двигателей с короткозамкнутым ротором. Ротор с короткозамкну-той обмоткой может работать с любым числом полюсов статора. Наоборот, ротор двигателя с фазной обмоткой может нормально работать лишь при определенном числе полюсов статора. Иначе обмотку ротора также пришлось бы переключать, что внесло бы большие усложнения в схему двигателя.

2. Изменение частоты переменного тока. При этом способе частоту переменного тока, подводимого к обмотке статора двигателя, изменяют при помощи специального генератора. Регулировку изменения частоты тока выгодно производить, когда имеется большая группа двигателей, требующих совместного плавного регулирования скорости вращения.

3. Введение сопротивления в цепь ротора. Во время работы двигателя в цепь обмотки ротора вводят сопротивление регулировочного реостата. Такой способ применим только для двигателей с фазным ротором.

4. Управление с помощью дросселей насыщения. Однофазный дроссель насыщения имеет две обмотки: одна включена в цепь переменного тока, другая, называемая управляющей или подмагничивающей обмоткой, подключается к источнику постоянного напряжения (выпрямителю). С увеличением тока в управляющей обмотке магнитная система дросселя насыщается и индуктивное сопротивление обмотки переменного тока уменьшается. Включая дроссели в каждую фазу асинхронного двигателя и меняя ток управляющей обмотки, можно менять сопротивление в цепи статора двигателя, а следовательно, и скорость вращения самого двигателя.

Для пуска в ход двигателей постоянного тока большой мощности, а также для широкой регулировки скорости вращения двигателей применяют схему «генератор – двигатель», сокращенно Г – Д. Система Г – Д дает возможность осуществить плавный пуск и широкую регулировку скорости вращения двигателя.

27. Работа 3-фазного эл. двигателя в однофазной сети.

???????????????????????????????????????????????????????????????

28. Работа 3фазного двигателя с фазным ротором, пуск в работу.

???????????????????????????????????????????????????????????????

29. Способы регулирования оборотов двигателей.

Регулирование частоты вращения двигателей определяется в соответствии с требованиями технологических процессов и тех производственных механизмов, в которых они используются. Оно характеризуется следующими основными показателями.
Диапазон регулирования Д (предел изменения частоты вращения). Под этой величиной понимается отношение максимальной частоты вращения двигателя к его минимальной частоте вращения.
Плавность регулирования, которая характеризуется минимальным скачком частоты вращения двигателя при переходе с одной механической характеристики на другую.
Направление возможного изменения частоты вращения двигателя (зона регулирования).
При номинальных условиях работы (напряжении и частоте питающей сети) двигатель имеет естественную механическую характеристику. При регулировании частоты вращения соответствующие им характеристики будут отличаться от естественной. Эти характеристики носят название искусственных (регулировочных) характеристик. С помощью одних методов регулирования удается получить искусственные характеристики, располагающиеся только ниже естественной. Другие методы обеспечивают регулирование частоты вращения выше и ниже естественной характеристики. Экономичность регулирования определяется по дополнительным капитальным затратам, необходимым при создании регулировочных устройств, а также по потерям электроэнергии при регулировании.

Следует отметить, что в ряде случаев, например для механизмов, работающих сравнительно малое время на искусственных характеристиках, потери электроэнергии даже при неэкономичных способах регулирования будут невелики (работа на низких доводочных скоростях лифтов, кранов и др.). При этом более рационально применение простых и дешевых способов регулирования частоты вращения двигателей, даже и неэкономичных с точки зрения потребления энергии.

Допустимая нагрузка двигателя при работе его на регулировочных характеристиках ограничивается величинами токов в статорной и роторных цепях. Эта нагрузка определяется допустимым нагревом двигателя и во многом определяется механическими характеристиками производственных механизмов, моментом сопротивления на валу, моментом инерции двигателя и механизма и т. д.

Регулирование частоты вращения асинхронных двигателей может производиться способом воздействия на него со стороны статора или со стороны ротора. Все три способа нашли широкое применение на практике. Рассмотрим эти способы подробнее.

Регулирование частоты вращения изменением частоты питающей сети является наиболее экономичным способом регулирования и позволяет получить хорошие механические характеристики электропривода. При изменении частоты питающей сети обеспечивается изменение частоты вращения магнитного поля асинхронного двигателя. Источник питания двигателя должен осуществлять преобразование напряжения стандартной частоты сети 50 Гц в напряжение с требуемой частотой. Одновременно с изменением частоты должна регулироваться по определенному закону и величина подводимого к двигателю напряжения, чтобы обеспечить высокую жесткость механической характеристики и требуемую перегрузочную способность двигателя. При регулировании частоты вращения асинхронных двигателей изменением частоты питающей сети можно обеспечить различные режимы работы: с постоянным вращающим моментом; с постоянной мощностью на валу; с моментом, пропорциональным квадрату частоты.

Зависимости между регулируемыми напряжением и частотой с учетом влияния активного сопротивления статора, изменения жесткости механических характеристик, насыщения стали, ухудшения теплоотдачи на низких частотах вращения ротора двигателя имеют довольно сложный характер. В качестве источника питания могут применяться электромашинные вращающиеся преобразователи, использующие электрические машины, или статические преобразователи частоты на полупроводниковых приборах, которые серийно выпускает промышленность. Положительным свойством частотного регулирования является возможность плавного регулирования в широком диапазоне в обе стороны от естественной характеристики (в том числе возможно вращение двигателя с частотой, большей номинальной). При регулировании обеспечивается жесткость характеристик и высокая перегрузочная способность. Однако в ряде случаев в приводах металлообрабатывающих станков, электрошпинделей, мощных воздуходувок и других механизмов частотное регулирование является наиболее приемлемым.

Регулирование частоты вращения изменением числа полюсов в обмотке статора обеспечивается благодаря изменению частоты вращения магнитного поля статора. При неизменной частоте питающей сети частота вращения магнитного поля и определяемая ею частота вращения ротора изменяются обратно пропорционально числу полюсов. Так как число полюсов, фиксированное ступенями, может быть равно 2, 4, 6, 8, 10 и т. д., что при частоте питающей сети, равной 50 Гц, соответствует синхронной частоте вращения 3000, 1500, 1000, 750, 600 об/мин и т. д., то указанным способом может быть обеспечено только ступенчатое регулирование.

Кроме двухскоростных асинхронных двигателей нашли применение трехскоростные и четырехскоростные двигатели. В трехскоростных двигателях размещаются одна переключаемая и одна непереключаемая обмотка, а в четырехскоростных — две переключаемые обмотки, позволяющие получить четыре синхронные частоты вращения, например 3000/1500/1000/500 об/мин. Двигатели с переключением числа пар полюсов, как правило, имеют короткозамкнутый ротор с обмоткой типа беличьей клетки. Такой ротор обеспечивает возможность работы без дополнительных пересоединений в его цепи. В случае фазного ротора в многоскоростных двигателях потребовалось бы производить переключения одновременно на статоре и роторе, что усложнило бы конструкцию ротора и эксплуатацию таких машин. К положительным показателям многоскоростных асинхронных двигателей следует отнести экономичность и относительно большой диапазон регулирования частоты вращения ротора. Недостатком данного способа регулирования является указанная выше невозможность плавного изменения частоты вращения.

Как отмечалось, в рамках единой общепромышленной серии асинхронных двигателей 4А выпускается модификация многоскоростных двигателей, предназначенных для работы на двух, трех или четырех скоростях. Регулирование частоты вращения изменением скольжения является одним из простых способов регулирования. В то же время при изменении (увеличении) скольжения изменяются (увеличиваются) потери в обмотке ротора, что приводит к уменьшению КПД при регулировании.

Регулирование скольжения можно осуществлять как со стороны статора, так и со стороны ротора. Естественно, что во втором случае ротор должен быть фазным и иметь выведенную на контактные кольца обмотку. При регулировании со стороны статора изменяют приложенное к его обмотке напряжение. Увеличение напряжения сверх номинального приводит к насыщению магнитной цепи двигателя и потому не применяется.

Для регулирования частоты вращения уменьшают напряжение питания. При этом развиваемый двигателем момент изменяется пропорционально квадрату напряжения и соответственно изменяются механические характеристики двигателя, в результате чего изменяются и значения рабочих скольжений. При регулировании со стороны ротора в основном применяется реостатное регулирование частоты вращения путем введения в цепь обмотки ротора добавочных активных сопротивлений (резисторов). При этом важно заметить, что изменение в широких пределах частоты вращения двигателя при данном способе регулирования не повлечет за собой изменения максимального (критического) момента. Таким образом, перегрузочная способность двигателя при регулировании не снижается.

30. Работа 3фазного двигателя в однофазной сети, пуск в работу.

??????????????????????????????????????????????????????

 

 

 

 


Дата добавления: 2015-08-27; просмотров: 161 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.01 сек.)







<== предыдущая лекция | следующая лекция ==>