Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Электрическая цепь (гальваническая цепь) — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в 1.которых могут быть описаны с помощью



Электрическая цепь (гальваническая цепь) — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в 1.которых могут быть описаны с помощью понятий сила тока и напряжение.

Изображение электрической цепи с помощью условных знаков называют электрической схемой (рисунок 1).

Электрические цепи подразделяют на неразветвленные и разветвленные. На рисунке 1 представлена схема простейшей неразветвленной цепи. Во всех ее элементах течет один и тот же ток. Простейшая разветвленная цепь изображена на рисунке 2. В ней имеются три ветви и два узла. В каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 2), то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым или вырожденным узлом.

Линейные и нелинейные электрические цепи[править | править вики-текст]Линейной электрической цепью называют такую цепь, все компоненты которой линейны. К линейным компонентам относятся зависимые и независимые идеализированные источники токов и напряжений, резисторы (подчиняющиеся закону Ома), и любые другие компоненты, описываемые линейными дифференциальными уравнениями, наиболее известны электрические конденсаторы и катушки индуктивности. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной.

 

Изображение электрической цепи с помощью условных обозначений называют электрической схемой. Функция зависимости тока, протекающего по двухполюсному компоненту от напряжения на этом компоненте называют вольт-амперной характеристикой (ВАХ). Часто ВАХ изображают графически в декартовых координатах. При этом по оси абсцисс на графике обычно откладывают напряжение, а по оси ординат — ток.

 

В частности, омические резисторы, ВАХ которых описывается линейной функцией и на графике ВАХ являются прямыми линиями, называют линейными.

 

Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности без ферромагнитных сердечников.



 

Некоторые нелинейные цепи можно приближенно описывать как линейные, если изменение приращений токов или напряжений на компоненте мало, при этом нелинейная ВАХ такого компонента заменяется линейной (касательной к ВАХ в рабочей точке). Этот подход называют «линеаризацией». При этом к цепи может быть применён мощный математический аппарат анализа линейных цепей. Примерами таких нелинейных цепей, анализируемых как линейные относятся практически любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты (усилители, генераторы и др.).

По роду тока: постоянного тока, переменного тока, синусоидальные, несинусоидальные.

По числу фаз: однофазные, трехфазные.

По характеру элементов: линейные (в них все элементы линейные), нелинейные (содержат хотя бы один нелинейный элемент).

Линейные элементы отличаются от нелинейных вольт-амперными характеристиками (ВАХ). Примеры ВАХ приведены на рис. 1.5.

На электрические цепи с сосредоточенными и с распределенными параметрами (например ЛЭП).

По способу соединения потребителей: разветвленные, неразветвленные.

Основные топологические понятия:

узел – место соединения трех и более ветвей;

ветвь – участок цепи между двумя соседними узлами, в котором все элементы соединены последовательно;

контур – замкнутый участок электрической цепи, в котором каждый из элементов цепи встречается не более одного раза.

2. Электри́ческий ток — направленное (упорядоченное) движение заряженных частиц[1][2][3].

Такими частицами могут являться: в металлах — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля[4].

Электрический ток имеет следующие проявления:

нагревание проводников (в сверхпроводниках не происходит выделения теплоты);

изменение химического состава проводников (наблюдается преимущественно в электролитах);

создание магнитного поля (проявляется у всех без исключения проводников)[3].

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно отношению работы эффективного электрического поля (включающего сторонние поля[1]), совершаемой при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда.

 

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). Напряжение в общем случае формируется из двух вкладов: работы электрических сил и работы сторонних сил. В случае, когда на участке цепи не действуют сторонние силы (в этом случае A^{ex}_{AB} = 0), работа по перемещению заряда складывается только из работы потенциального электрического поля A^{el}_{AB}, которая не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение U_{AB} между двумя точками совпадает с разностью потенциалов между ними (поскольку \varphi_{A} - \varphi_{B} = A^{el}_{AB}/q). В общем случае напряжение U_{AB} между двумя точками отличается от разницы потенциалов в этих точках[2] на работу сторонних сил по перемещению единичного положительного заряда (эту работу называют электродвижущей силой \mathcal E_{AB} на данном участке цепи, \mathcal E_{AB} = A^{ex}_{AB}/q

U_{AB} = \varphi_{A} - \varphi_{B} + \mathcal E_{AB}.

Определение электрического напряжения можно записать в другой форме (для этого нужно представить работу A^{ef}_{AB} как интеграл вдоль траектории L, идущей из точки A в точку B):

U_{AB}=\int\limits_L \vec E_{ef} d\vec l

— интеграл от проекции эффективной напряжённости поля ~\vec E_{ef} (включающего сторонние поля) на касательную к траектории L, направление которой в каждой точке траектории совпадает с направлением вектора d\vec l в данной точке. В электростатическом поле, когда сторонних сил нет, значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

Понятие ввел Георг Ом в работе 1827 года, в которой предлагалась гидродинамическая модель электрического тока для объяснения открытого им в 1826 г. эмпирического закона Ома: U\! = IR.

Электри́ческое сопротивле́ние (гальваническое сопротивление) — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему[1].

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

R = \frac{U}{I},

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

3. Зако́н О́ма — эмпирический физический закон, определяющий связь электродвижущей силы источника или электрического напряжения U с силой тока I и сопротивлением проводника R (для участка цепи):

 

I = \frac{ U }{ R }.

Закон открыт в 1826 году Георгом Омом и назван в его честь.

 

Ом записал свой закон (для полной цепи) в виде[1]:

 

X\! = { a \over { b + l } }, \qquad(1)

где:

 

X — показания гальванометра; в современных обозначениях — сила тока I;

a — величина, характеризующая свойства источника напряжения, постоянная (константа) в широких пределах и не зависящая от величины тока; в современных обозначениях — электродвижущая сила (ЭДС) \varepsilon\!;

l — величина, определяемая длиной соединяющих проводов; в современных обозначениях — сопротивление внешней цепи R;

b — параметр, характеризующий свойства всей электрической установки; в современных обозначениях — внутреннее сопротивление источника r.

4.Первое правило[править | править вики-текст]

Сколько тока втекает в узел, столько из него и вытекает. i2 + i3 = i1 + i4

Первое правило Кирхгофа гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла — отрицательным: Алгебраическая сумма токов, направленных к узлу равна сумме направленных от узла.

\sum\limits^n_{j=1}I_j=0.

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда.

Второе правило[править | править вики-текст]

Второе правило Кирхгофа (правило напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений на всех ветвях, принадлежащих любому замкнутому контуру цепи, равна алгебраической сумме ЭДС ветвей этого контура. Если в контуре нет источников ЭДС (идеализированных генераторов напряжения), то суммарное падение напряжений равно нулю:

для постоянных напряжений \sum^n_{k=1} E_k= \sum^m_{k=1}U_k=\sum^m_{k=1}R_kI_k;

для переменных напряжений \sum^n_{k=1} e_k= \sum^m_{k=1}u_k=\sum^m_{k=1}R_ki_k+\sum^m_{k=1}u_{L\,k}+\sum^m_{k=1}u_{C\,k}.

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

 

Мгновенная электрическая мощность[править | править вики-текст]

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

 

По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки A в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени. Введём обозначения:

 

U — напряжение на участке A-B (принимаем его постоянным на интервале \Delta t),

Q — количество зарядов, прошедших от A к B за время \Delta t,

A — работа, совершённая зарядом Q при движении по участку A-B,

P — мощность.

Энергия Передача энергии w по электрической цепи (например, по линии электропередачи), рассеяние энергии, то есть переход электромагнитной энергии в тепловую, а также и другие виды преобразования энергии характеризуются интенсивностью, с которой протекает процесс, то есть тем, сколько энергии передается по линии в единицу времени, сколько энергии рассеивается в единицу времени. Интенсивность передачи или преобразования энергии называется мощностью р. Сказанному соответствует математическое определение:

.

Последовательное соединение сопротивлений

Возьмем три постоянных сопротивления R1, R2 и R3 и включим их в цепь так, чтобы конец первого сопротивления R1был соединен с началом второго сопротивления R2, конец второго — с началом третьего R3, а к началу первого сопротивления и к концу третьего подведем проводники от источника тока (рис. 1).

Такое соединение сопротивлений называется последовательным. Очевидно, что ток в такой цепи будет во всех ее точках один и тот же.

Рис 1. Последовательное соединение сопротивлений

Как определить общее сопротивление цепи, если все включенные в нее последовательно сопротивления мы уже знаем? Используя положение, что напряжение U на зажимах источника тока равно сумме падений напряжений на участках цепи, мы можем написать:

U = U1 + U2 + U3

где

U1 = IR1 U2 = IR2 и U3 = IR3

или

IR = IR1 + IR2 + IR3

Вынеся в правой части равенства I за скобки, получим IR = I(R1 + R2 + R3).

Поделив теперь обе части равенства на I, будем окончательно иметь R = R1 + R2 + R3

Таким образом, мы пришли к выводу, что при последовательном соединении сопротивлений общее сопротивление всей цепи равно сумме сопротивлений отдельных участков.

Проверим этот вывод на следующем примере. Возьмем три постоянных сопротивления, величины которых известны (например, R1 == 10 Ом,R2 = 20 Ом и R3 = 50 Ом). Соединим их последовательно (рис. 2) и подключим к источнику тока, ЭДС которого равна 60 В (внутренним сопротивлением источника тока пренебрегаем).

Преобразование треугольник-звезда позволяет упростить расчёт цепей, содержащих замкнутые контуры из резисторов и других пассивных элементов. Дальнейшие рассуждения проводятся для резисторов, но фактически применимы к произвольным импедансам. Идея преобразования — замена треугольника из резисторов более простой эквивалентной схемой — звездой.

Прямое преобразование[править | править вики-текст]

Сопротивление между выводами 1 и 2 в схеме «звезда» есть R1+R2, а в схеме «треугольник» резистор R12 соединён параллельно с последовательно соединёнными R23 и R13, то есть сопротивление между выводами 1 и 2 R1+R2=R12(R23+R13)/(R12+R23+R13), аналогично для других пар выводов. Решая эту очень простую систему уравнений, получаем:

Преобразование треугольник-звезда позволяет упростить расчёт цепей, содержащих замкнутые контуры из резисторов и других пассивных элементов. Дальнейшие рассуждения проводятся для резисторов, но фактически применимы к произвольным импедансам. Идея преобразования — замена треугольника из резисторов более простой эквивалентной схемой — звездой.

Прямое преобразование[править | править вики-текст]

Сопротивление между выводами 1 и 2 в схеме «звезда» есть R1+R2, а в схеме «треугольник» резистор R12 соединён параллельно с последовательно соединёнными R23 и R13, то есть сопротивление между выводами 1 и 2 R1+R2=R12(R23+R13)/(R12+R23+R13), аналогично для других пар выводов. Решая эту очень простую систему

2.10. Потенциальная диаграмма. Под потенциальной диаграммой понимают график распределения потенциала вдоль какого-либо участка цепи или замкнутого контура. По оси абсцисс на нем откладывают сопротивления вдоль контура, начиная с какой-либо произвольной точки, по оси ординат - потенциалы. Каждой точке участка цепи или замкнутого контура соответствует своя точка на потенциальной диаграмме.

Рассмотрим последовательность построения потенциальной диаграммы поданным примера 2.

Пример 11. Построить потенциальную диаграмму для контура abcea (см. рис. 2.9).

Решение. Подсчитаем суммарное сопротивление контура: 4 + 3 + 1 = 8 0м. Выберем масштабы по оси абсцисс (ось х) и по оси ординат (ось у).

Произвольно примем потенциал одной из точек, например точки a, φa = 0. Эту точку на диаграмме рис. 2.11, а поместим в начало координат.

Потенциал точки b: φb = φa + I24 = φa - 60 = - 60 В; ее координаты: х = 4, у = -60. Потенциал точки с: φc = φb + Е2 = 4 В; ее координаты: х = 4, у = 4. Потенциал точки е: φe = φc + I3R4 = 4 - 1 x 1 = З В; ее координаты: х = 5; у = 3.

Тангенс угла а1 наклона прямой ааЬ к оси абсцисс пропорционален току I2, а тангенс угла а2 наклона прямой се - току I3; , где mr и mφ - масштабы по осям х и у.

Обратим внимание на различие в знаках, с которыми входит падение напряжения IR при определении потенциала какой-либо точки схемы через потенциал исходной точки и при составлении уравнений по второму закону Кирхгофа. При вычислении потенциала последующей точки через потенциал предыдущей IR берут со знаком минус, если перемещение по сопротивлению R совпадает по направлению с током, тогда как при составлении уравнений по второму закону Кирхгофа IR некоторого участка цепи берут в сумме ΣIR со знаком плюс, если обход этого участка совпадает с направлением тока I на нем.

 


Дата добавления: 2015-08-27; просмотров: 296 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Внутризаводской оборот=25700+6400=32100 | 1. экономическая школа, широко использовавшая математический аппарат и предельные величины для анализа экономических явлений

mybiblioteka.su - 2015-2024 год. (0.018 сек.)