Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

1устройство электрических машин постоянного тока и конструкции их сборочных единиц и деталей электротехническая промышленность выпускает электрические машины постоянного тока большой номенклатуры по 3 страница



Встречное включение обмоток возбуждения применяется лишь в машинах специального назначения. В обычных же кра­новых электродвигателях со смешанным возбуждением обмот­ки всегда включены согласно, поэтому при дальнейшем изло­жении материала будем предполагать, что ампер-витки обеих обмоток (и магнитные потоки) складываются, т. е. обмотки включены согласно и для электродвигателя справедливо равен­ство (69).

Наличие двух обмоток возбуждения позволяет конструиро­вать и изготавливать электродвигатели с различными свой­ствами и характеристиками. При естественной схеме включе­ния характеристики рассматриваемого электродвигателя жестче, чем у электродвигателей с последовательным возбуждением, и мягче, чем у электродвигателей с параллельным возбуждени­ем. Однако в зависимости от соотношения ампер-витков, созда­ваемых параллельной и последовательной обмотками, характе­ристики электродвигателя по своему характеру приближаются либо к характеристикам электродвигателя с последовательным возбуждением, либо с параллельным.

Для подъемно-транспортных машин выпускаются электро­двигатели, в которых при полной нагрузке половина ампер-вит­ков возбуждения создается параллельной обмоткой, а полови­на — последовательной.

В случае изменения нагрузки магнитный поток электродви­гателя со смешанным возбуждением не остается постоянным, так как ампер-витки, создаваемые последовательной обмоткой, определяются током якоря. Зависимость результирующего маг­нитного потока от тока якоря приведена на рис. 32, а, который показывает, что каждому значению тока якоря соответствует определенный магнитный поток и, следовательно, вращающий момент М = к Ф I я при изменении нагрузки меняется не только за счет изменения тока якоря, но и за счет магнитного потока возбуждения. Зависимость М = f (I я) для электродвигателя со смешанным возбуждением показана на рис. 32, б.

19,20 Конструкция синхронной машины

 

Устройство синхронных машин. Синхронные машины вне зависимости от режима работы состоят из двух основных частей: неподвижного статора, выполняющего функции якоря и ротора, вращающегося внутри статора и служащего индуктором (рис. 4.1).

Статор трехфазной синхронной машины аналогичен статору трехфазного асинхронного двигателя. Он состоит из корпуса /, цилиндрического сердечника 2, набранного из отдельных пластин электротехнической стали, и трехфазной обмотки 3, уложенной в пазы сердечника.



Ротор синхронной машины представляет собой электромагнит постоянного тока, который создает магнитное поле, вращающееся вместе с ротором. Ротор имеет обмотку возбуждения 4, которая через специальные контактные кольца 5 питается постоянным током от выпрямителя или от небольшого генератора постоянного тока, называемого возбудителем.

В отечественной энергетике также используются синхронные машины с «бесщеточным» возбуждением. Обмотка ротора таких машин питается от выпрямителя, вращающегося вместе с ротором. Выпрямитель в свою очередь получает питание от возбудителя, имеющего вращающуюся вместе с ротором трехфазную обмотку, возбуждаемую неподвижными постоянными магнитами.

Роторы синхронных машин бывают двух типов: с явно выраженными и неявно выраженными полюсами.

Роторы с явно выраженными полюсами (рис. 4.1) применяются в сравнительно тихоходных машинах (80 – 1000 об/мин), например гидрогенераторах; они имеют значительноечисло полюсов. Конструктивно роторы этого типа (рис. 4.2) состоят из вала 6, ступицы 7, полюсов 8, укрепляемых в шлицах ступицы, полюсных катушек 4 возбуждения, размещенных на полюсах. Поверхность полюсного наконечника полюсов имеет такой профиль, что магнитная индукция в воздушном зазоре машины распределяется примерно по синусоидальному закону. Для быстроходных машин (турбогенераторы, синхронные двигатели, турбокомпрессоры и т. п.) явнополюсная конструкция ротора неприменима из-за сравнительно большого диаметра ротора и возникающих в связи с этим недопустимо больших центробежных сил.

Большей механической прочностью обладает ротор с неявно выраженными полюсами. Он состоит (рис. 4.3) из сердечника 1 и обмотки возбуждения 2. Сердечник изготовляется из стальной поковки цилиндрической формы. На его внешней поверхности фрезеруются пазы, в которые закладывается обмотка возбуждения.

Обмотка возбуждения распределяется в пазах сердечника так, чтобы создаваемое ею магнитное поле было распределено в пространстве по закону, близкому к синусоидальному.

Принцип работы и ЭДС синхронного генератора. Работа синхронного генератора основана на явлении электромагнитной индукции. При холостом ходе обмотка якоря (статора) разомкнута, и магнитное поле машины образуется только обмоткой возбуждения ротора (рис. 4.4). При вращении ротора синхронного генератора от проводного двигателя ПД с постоянной частотой nо магнитное поле ротора, пересекая проводники фазных обмоток статора AX, BY, CZ (рис.4.4,а) наводит в них ЭДС , где B – магнитная индукция в воздушном зазоре между статором и ротором; l – активная длина проводника; – линейная скорость пересечения проводников магнитным полем.

21 Реакция якоря

В процессе работы нагруженного синхронного генератора в нем одновременно действуют МДС возбуждения Fв0 и якоря F1, при этом МДС якоря воздействует на МДС возбуждения, усиливая или ослабляя поле возбуждения или же искажая его форму.

Воздействие МДС обмотки якоря на МДС обмотки возбуждения называется реакцией якоря.

Реакция якоря оказывает влияние на рабочие свойства синхронной машины, так как изменение магнитного поля в машине сопровождается изменением ЭДС, наведенной в обмотке статора, а следовательно, изменением и ряда других величин, связанных с этой ЭДС. Влияние реакции якоря на работу синхронной машины зависит от значения и характера нагрузки.

Синхронные генераторы, как правило, работают на смешанную нагрузку (активно-индуктивную или активно-емкостную). Но для выяснения вопроса о влиянии реакции якоря на работу синхронной машины целесообразно рассмотреть случаи работы генератора при нагрузках предельного характера, а именно: активной, индуктивной и емкостной. Воспользуемся для этого векторными диаграммами МДС. При построении этих диаграмм следует иметь в виду, что вектор ЭДС Е0, индуцируемой магнитным потоком возбуждения в обмотке статора, отстает по фазе от вектора этого потока (а следовательно, и вектора МДС Fв0) на 90°. Что же касается вектора тока в обмотке статора I1, то он может занимать по отношению к вектору Е0 различные положения, определяемые углом y1, в зависимости от вида нагрузки.


 

Активная нагрузка (y1 = 0). На рис. 20.5, а представлены статор и ротор двухполюсного генератора. На статоре показана часть фазной обмотки. Ротор явнополюсный, вращается против движения часовой стрелки. В рассматриваемый момент времени ротор занимает вертикальное положение, что соответствует максимуму ЭДС Е0 в фазной обмотке. Так как ток при активной нагрузке совпадает по фазе с ЭДС, то указанное положение ротора соответствует также и максимуму тока. Изобразив линии магнитной индукции поля возбуждения (ротора) и линии магнитной индукции поля обмотки статора, видим, что МДС статора F1 направлена перпендикулярно МДС возбуждения Fв0. Этот вывод также подтверждается векторной диаграммой, построенной для этого же случая. Порядок построения этой диаграммы следующий: в соответствии с пространственным положением ротора генератоpa проводим вектор МДС возбуждения Fв0; под углом 90° к этому вектору в сторону отставания проводим вектор ЭДС Е0, наведенной магнитным полем возбуждения в обмотке статора; при подключении чисто активной нагрузки ток в обмотке статора I1 совпадает по фазе с ЭДС Е0, а поэтому вектор МДС F1, создаваемый этим током, сдвинут в пространстве относительно вектора Fв0 на 90°.

 

 

Рис. 20.5. Реакция якоря синхронного генератора при активной (а),

индуктивной (б) и емкостной (в) нагрузках

Такое воздействие МДС якоря F1 на МДС возбуждения Fв0 вызовет искажения результирующего поля машины: магнитное поле машины ослабляется под набегающим краем полюса и усиливается под сбегающим краем полюса (рис. 20.6).

 

22Упрощенные схема замещения и векторная диаграмма синхронного генератора

Оси потока возбуждения и результирующего потока смещены на некоторый угол θ (зависящий от величины нагрузки), у генератора ось результирующего потока отстает от оси потока возбуждения (см. рис.). Поле ротора как бы «тянет» за собой поле якоря, при этом на валу ротора создается тормозной момент Mт, направленный против вращающего момента приводного двигателя Mпд. Пренебрегая активным сопротивлением обмоток и потоком рассеяния якоря, схеме замещения одной фазы якоря можно придать вид правого рис., а, где Xсн – синхронное индуктивное сопротивление фазной обмотки якоря, учитывающее ЭДС самоиндукции, наводимую в обмотке вращающимся полем якоря. Для схемы замещения рис.,а получаем упрощенное уравнение ЭДС генератора:

0 = + jXсня, где – фазное напряжение статора.

 

Схема замещения якоря (а) и векторная диаграмма (б) синхронного генератора

0 = + jXсня,

 

Если к якорю генератора подключается активно-индуктивная нагрузка, например асинхронный двигатель, то ток якоря отстает на угол φ от напряжения статора и векторная диаграмма принимает вид, показанный на рис., б.

Индуктивное напряжение jXсня,, задаваемое вторым слагаемым в формуле, опережает ток якоря я на угол 90°. Угол θ между векторами 0 и равен углу между осями потоков Фви Ф (рис.) и называется углом нагрузки или углом рассогласования

23ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СИНХРОННОГО ГЕНЕРАТОРА

Для оценки свойств синхронных генераторов используют те же характеристики, что и для генераторов постоянного тока. Только условия, при которых определяются внешняя и регулировочная характеристики, несколько дополняются.

Рис. 11.6. Внешние характеристики синхронного генератора

Рис. 11.7. Регулировочные характеристики синхронного генератора

11.5.1. Характеристика холостого хода. Основной магнитный поток синхронного генератора является функцией тока возбуждения, т. е. Ф0 (Iв).

Если в (11.1) заменить f согласно (11.2), а магнитный поток записать как функцию тока возбуждения Ф0(Iв), получим

Е0 = 4,44kw

рn

Ф0(Iв).

 

Изменяя с помощью реостата rр (см. рис. 11.4) ток Iв, можно менять тем самым поток Ф0 и, следовательно, ЭДСЕ0. Характеристика холостого хода синхронного генератораЕ0 (Iв) не отличается от характеристики холостого хода генераторов постоянного тока (см. рис. 9.13) и определяется при тех же условиях, т. е. при I = 0 и n = const.

11.5.2. Внешние характеристики. Как говорилось ранее, внешняя характеристика генератора независимого возбуждения U(I) определяется при следующих условиях: n= const и Iв = const. Так как напряжение синхронного генератора зависит при прочих равных условиях еще от характера нагрузки, то дополнительным условием, при котором следует определять внешнюю характеристику синхронного генератора, должно быть постоянство коэффициента мощности, т. е. cos φ = const.

Внешние характеристики синхронного генератора при активной (φ = 0), активно-индуктивной (φ > 0) и активно-емкостной (φ < 0) нагрузках приведены на рис. 11.6. Они являются наглядной иллюстрацией того, что говорилось в § 11.4 о влиянии характера нагрузки на напряжение генератора.

Относительное изменение напряжения генератора, %, оценивают по формуле

Δuном =

Uх - Uном

100 =

ΔUном

100,

Uном

Uном

где Uх — напряжение генератора при холостом ходе (I = 0), равное ЭДС; Uном — напряжение при номинальной нагрузке (I = Iном).

В случае наиболее часто встречающейся активно-индуктивной нагрузки при cos φ ≈ 0,8 относительное изменение напряжения Δuном у некоторых генераторов доходит до 35 — 45%.

11.5.3. Регулировочные характеристики. Естественно, что поскольку напряжение синхронного генератора изменяется при изменении нагрузки в значительных пределах, необходимо принимать меры для уменьшения изменения напряжения. Этого можно добиться, очевидно, за счет соответствующего изменения ЭДС генератора E0 путем воздействия на его ток возбуждения Iв. О том, как и в каких пределах необходимо изменять ток возбуждения при изменении тока нагрузки генератора, чтобы поддерживать U = const, и дают представление регулировочные характеристики (рис. 11.7).

Дополнительным условием, при котором должна определяться каждая из характеристик (кроме n = const), является cos φ = const.

Следует обратить внимание на то, что для нормальных условий работы приемников электрической энергии необходимо поддерживать напряжение и частоту синхронного генератора на заданных уровнях. Для этого синхронные генераторы снабжаются в большинстве случаев регуляторами, управляющими напряжением и частотой вращения генераторов и воздействующими на ток возбуждения генераторов и момент первичного двигателя.

24 ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННЫХ ГЕНЕРАТОРОВ

Для включения синхронного генератора на параллельную работу необходимо выполнить следующие условия:

1. Напряжение подключаемой машины должно быть равно напряжению сети или работающей машины.
2. Частота подключаемого генератора должна быть равна частоте сети.
3. Напряжения всех фаз подключаемой машины должны быть противоположны по фазе напряжениям соответствующих фаз сети или работающей машины.
4. Для подключения на параллельную работу трехфазного синхронного генератора необходимо также обеспечить одинаковое чередование фаз подключаемой машины и сети.

Подготовку к включению на параллельную работу синхронного генератора ведут следующим образом. Приводят во вращение первичный двигатель и регулируют его скорость вращения так, чтобы она была примерно равна номинальной. Затем возбуждают генератор и, следя за показаниями вольтметра, под-

ключенного к зажимам статора, регулируют напряжение машины при помощи реостата в цепи возбуждения до тех пор, пока оно не станет равным напряжению сети. Воздействуя на регулятор первичного двигателя и наблюдая за показаниями частотомера, устанавливают более точно скорость машины так, чтобы частота генератора была равна частоте сети. Тем самым первое и второе условия для включения на параллельную работу будут выполнены.

Для выполнения третьего условия, а также для установления полного равенства частот служат фазные лампы. Фазные лампы для машин однофазного тока включаются по двум схемам: на потухание (фиг. 255, а) и на горение (фиг. 255, б). При совпадении фаз сети и машины лампы, включенные по схеме а, погаснут, а по схеме б будут гореть полным накалом. В этот момент и нужно включить рубильник генератора.

Для машин трехфазного тока фазные лампы включаются также по двум схемам: на потухание (фиг. 256, а) и на вращение света (фиг. 256, б). Лампы, включенные по схеме а, при одинаковом чередовании фаз сети и машины будут сначала быстро и одновременно мигать, затем мигание их становится все реже и реже и, когда лампы медленно погаснут, нужно включить рубильник генератора.

Для более точного определения момента включения рубильника часто ставят так называемый нулевой вольтметр, имеющий двустороннюю шкалу.

При одинаковом чередовании фаз сети и машины лампы, включенные по схеме б, будут мигать поочередно, и если их расположить по кругу, то получится впечатление вращающегося света. Скорость вращения света зависит от разности частот. Генератор нужно включить в момент, когда лампы, включенные накрест, загорятся полным накалом, а третья лампа погаснет. Иначе говоря, рубильник удобнее включить в момент, когда меняется направление вращения света.

При неодинаковом порядке чередования фаз лампы, включенные по схеме а, дадут вращение света, а по схеме б будут одновременно загораться и потухать. Для изменения порядка чередования фаз машины два любых ее провода, подходящие к рубильнику, нужно поменять местами.

Включение фазных ламп высоковольтных генераторов осуществляется через измерительные трансформаторы напряжения (гл. четырнадцатая, 171).

Таким образом, с помощью фазных ламп мы можем определить противоположность фаз, установить равенство частот и порядок чередования фаз сети и подключаемой машины. Чередование фаз машины можно также определить, пользуясь особым прибором — фазоуказателем, представляющим собой небольшой асинхронный двигатель-Направление вращения диска фазоуказателя показывает порядок чередования фаз.

Когда синхронный генератор работает параллельно с сетью, скорость вращения его остается постоянной, равной синхронной.

Процесс подготовки генератора для включения его на параллельную работу называется синхронизацией.

В последние годы получил распространение метод включения синхронных генераторов на параллельную работу, называемый самосинхронизацией. Сущность этого метода заключается в следующем. Первичным двигателем разворачивают генератор и устанавливают приблизительно синхронную скорость. Замыкают обмотку возбуждения на дополнительное

сопротивление, равное 3—5-кратному значению ее сопро тивления. Включают рубильник, соединяющий генератор с сетью. Переключают обмотку возбуждения с дополнительного сопротивления к питающему ее источнику постоянного напряжения. После этого генератор сам входит в синхронизм.

Проделаем следующий опыт. В цепь статора синхронного генератора включим амперметр, ваттметр и фазометр. В цепь возбуждения генератора включим амперметр. Включим гене-

ратор на параллельную работу и дадим ему некоторую активную нагрузку. Увеличивая ток возбуждения при помощи реостата в цепи возбуждения, будем наблюдать показания приборов. Оказывается, что активная мощность, отдаваемая генератором в сеть, остается практически постоянной и во время опыта ваттметр будет давать неизменные показания. При неизменной активной нагрузке ток в цепи статора при некотором значении тока возбуждения получается минимальным. Это соответствует чисто активному току нагрузки генератора ( =1). Если к генератору подключить различные активные нагрузки, то каждому значению активной нагрузки будет соответствовать определенный ток возбуждения, при котором =1. При увеличении тока возбуждения сверх этого значения возникает отстающий реактивный ток. Фазометр будет показывать уменьшение и генератор будет отдавать в сеть отстающую реактивную мощность. Наоборот, если уменьшать ток возбуждения и сделать его меньшим указанного значения, то появится опережающий реактивный ток. Фазометр снова покажет уменьшение , и генератор будет для создания своего вращающегося поля потреблять из сети отстающую реактивную мощность.

Зависимость тока статора (якоря) синхронного генератора от тока возбуждения при постоянной активной мощности называется U-образной характеристикой машины, получившей свое название за внешний вид кривой, напоминающей букву U. На фиг. 257 показана U-образная характеристика синхронного генератора.

25Угловая характеристика

Синхронная машина обратима, т.е. можно работу синхронного генератора перевести в режим двигателя. При этом угол θ (если для генератора его считать положительным) изменит свой знак.

Выражение электромагнитной мощности и момента для синхронного двигателя аналогичны генератору. На рис. 40 представлены угловые характеристики для неявнополюсной машины режима генератора и двигателя.

Рис. 40.

Как было указано выше, если машина работает в режиме генератора, то под действием момента турбины Мт угол θ (угол между осью индуктора и осью результирующего потока Фδ) возрастает. Электромагнитный момент – тормозной. Ось индуктора опережает ось потока Фδ, и угол θ считается положительным. Если разгрузить генератор до θ=0, то напряжение генератора уравновешено ЭДС генератора и ток статора I=0. Если теперь нагрузить машину внешней нагрузкой, то машина перейдет в двигательный режим. При этом, электромагнитный момент будет движущим, а момент тормозной Мв – момент на валу. Как видим из рис. 40 при двигательном режиме результирующий поток Фδ будет тянуть за собой индуктор. Угол θ будет отрицательным. Двигатель будет работать устойчиво в диапазоне угла θ=0-900.

Уравнения электромагнитной мощности и момента неявнополюсного синхронного двигателя запишутся:

Работа синхронного двигателя в режиме угловых характеристик соответствует режиму: iB=const, M=var

26 Потери и кпд

Преобразование энергии в синхронных машинах связано с её потерями. Все виды потерь разделяют на основные и добавочные:

1) Основные потери Pо – это электрические потери в обмотке статора Pэ1, потери на возбуждение Pв, магнитные потери Pм1 и механические потери Pмех:

Pо = Pэ1+Pв+Pм+Pмех.

Электрические потери обусловлены нагревом обмоток статора,

Pэ1 = m1×I²1×r1,

где m1 – число ваз статора, I1 – ток статора, r1 – активное сопротивление фазы обмотки статора при рабочей температуре 75˚С.

Потери на возбуждение в основном обусловлены нагревом в обмотке возбуждения,

Pв = (I²в×rв)+(ΔUщ×Iв),

где Iв – ток возбуждения, rв – активное сопротивление цепи возбуждения, ΔUщ – падение напряжения в щёточном контакте (≈2 В).

Магнитные потери это потери в сердечнике статора на перемагничивание,

Pм1 = Pг+Pв.т.,

где Pг – потери на гистерезис, Pв.т. – потери на вихревые токи.

Механические потери это потери на трение в подшипниках, трение о воздух или другой охлаждающий газ и трение щёток о контактные кольца,

Pмех ≈ 3,68(v2/40)ᵌ×ᵌ×l1,

где v2 – окружная скорость на поверхности полюсного наконечника ротора, l1 – конструктивная длина сердечника статора.

2) Добавочные потери Pд – это потери в поверхностном слое ротора, вызванные пульсациями поля вследствие зубчатой поверхности статора и ротора Pп и потери, вызванные полями рассеивания Pр,

Pд = Pп+Pр.

Добавочные потери Pд в синхронных машинах при нагрузке определяют в процентах от подводимой мощности двигателей или от полезной мощности генераторов. Для машин мощностью до 1000 кВт Pд = 0,5%, а для машин мощностью более 1000 кВт – (0,25÷0,4)%.

Следовательно, суммарные потери в синхронной машине ∑P (кВт):

∑P = (Pо+Pд)/1000.

КПД синхронного генератора ηг:

ηг = 1-∑P/(Pн+∑P),

где Pн – активная мощность, отбираемая от генератора в сеть или отбираемая двигателем от сети (кВт), Pн = (m1×U1н×I1н× cos φ1)/1000.

КПД синхронного двигателя ηд:

ηд = 1-∑P/Pн.

КПД синхронной машины зависит от величины нагрузки, которая определяется коэффициентом нагрузки β, который определяется отношением отдаваемой или отбираемой машиной мощности P к номинальной мощности машины Pн (β = P/Pн) и от её характера (cos φ1). КПД синхронных машин мощностью до100кВт составляет (80÷90)%, у более мощных машин – (92÷99)%. Турбо- и гидрогенераторы мощностью в десятки и сотни тысяч киловатт имеют более высокие значения КПД.

27,28,29,30,31СИНХРОННЫЙ ДВИГАТЕЛЬ

Принцип действия синхронного двигателя. Так как синхронная машина обладает свойством обратимости, конструкция двигателя практически не отличается от конструкции синхронного генератора. Однако взаимодействие элементов теперь отвечает принципу действия двигателя. Электрическая активная мощность Р потребляется из сети, в результате чего по обмоткам статора протекает ток . Ток , как и в генераторе, создаёт МДС Fст, а она – потоки Фd и Фр,я, наводящие в обмотке статора ЭДС и .

По обмотке ротора протекает ток возбуждения Iв, её МДС Fв создаёт магнитный поток ротора Ф0. Вращаясь вместе с ротором, поток Ф0 в соответствии с законом электромагнитной индукции (ЭМИ) индуцирует в обмотке статора ЭДС , которая направлена против напряжения сети . Сумма ЭДС с учётом падения напряжения на активном сопротивлении обмотки статора уравновешивает напряжение сети . Магнитные потоки Ф0, Фd и Фр,я образуют результирующий магнитный поток двигателя Фрез.

Вал двигателя сцеплён с валом рабочей машины РМ (например, со шпинделем металлорежущего станка), потребляющей механическую энергию и создающей момент сопротивления Мс. В результате действия тормозящего момента Мс полюсы ротора отстают от полюсов результирующего поля статора (см. рис. 4.6). В двигательном режиме результирующий магнитный поток двигателя Фрезявляется ведущим; вращаясь, он увлекает за собой ротор, создавая вращающий момент Мдвигателя, преодолевающий тормозной момент Мс механической нагрузки.

Уравнение второго закона Кирхгофа для обмотки статора. В двигательном режиме синхронная машина потребляет из сети ток , который направлен навстречу ЭДС (рис.4.14,а).

Уравнение, записанное по второму закону Кирхгофа для фазы обмотки статора

, (4.4)

показывает, что противо-ЭДС и индуктивное падение напряжения jXсин уравновешивают напряжение сети (предполагается, что =0).

Векторная диаграмма синхронного двигателя. Векторная диаграмма построена по уравнению (4.4) на рис. 4.14, б. В результате действия механической нагрузки Мс ось магнитного потока ротора Ф0 отстает на угол от оси результирующего магнитного потока Фрез. Поэтому в двигательном режиме вектор ЭДС отстает по фазе на угол от вектора напряжения сети . Сопоставление векторных диаграмм синхронного двигателя (рис. 4.14,б) и синхронного генератора (см. рис. 4.13) показывает, что угол меняет свой знак. При построении векторной диаграммы двигателя вектор принимается за исходный.


Дата добавления: 2015-08-27; просмотров: 55 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.027 сек.)







<== предыдущая лекция | следующая лекция ==>