Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Машины, преобразующие механическую энергию в электрическую, называются генераторами.



Машины, преобразующие механическую энергию в электрическую, называются генераторами.

Простейший генератор постоянного тока (рис. 1) представляет собой помещенную между полюсами магнита рамку из проводника, концы которого присоединены к изолированным полукольцам, называемым пластинами коллектора. К полукольцам (коллектору) прижимаются положительная и отрицательная щетки, которые замыкаются внешней цепью через электрическую лампочку. Для работы генератора рамку проводника с коллектором необходимо вращать. В соответствии с правилом правой руки при вращении рамки проводника с коллектором в ней будет индуктироваться электрический ток, изменяющий свое направление через каждые пол-оборота, так как магнитные силовые линии каждой стороной рамки будут пересекаться то о одном, то в другом направлении. Вместе с этим через каждые пол-оборота изменяется контакт концов проводника рамки и полуколец коллектора со щетками генератора. Во внешнюю цепь ток будет идти в одном направлении, изменяясь только по величине от 0 до максимума. Таким образом, коллектор в генераторе служит для выпрямления переменного тока, вырабатываемого рамкой. Для того чтобы электрический ток был постоянным не только по направлению, но и по величине, (по величине — приблизительно постоянным), коллектор делают из многих (36 и более) пластин, а проводник представляет собой много рамок или секций, выполненных в виде обмотки якоря.


Рис. 1. Схема простейшего генератора постоянного тока: 1 — полукольцо или коллекторная пластина; I — рама проводника; 3 — щетка генератора

 

Принципиальное устройство простейшего генератора переменного тока показано на рис. 4. В этом генераторе концы рамки проводника присоединяются каждый к своему кольцу, а к кольцам прижимаются щетки генератора. Щетки замыкаются внешней цепью через электрическую лампочку. При вращении рамки с кольцами в магнитном поле генератор даст переменный ток, изменяющий через каждые пол-оборота величину и направление. Такой переменный ток называется однофазным. В технике применяются генераторы трех-

 


Рис. 2. Схема простейшего генератора переменного тока:

1 — полюс электромагнита; 2 — катушка возбуждения; 3 — контактное кольцо; 4 — щетка генератора; S — внешняя цепь; 6 — рамка проводника; 7 — источник постоянного тока

фазного тока, которые по ряду причин являются наиболее удобными для использования. Простейший трехфазный генератор имеет три рамки (обмотки) проводов, сдвинутых относительно друг друга по окружности вращения на 120 °. Трехфазный ток изменяет свою величину и направление через каждые 120° оборота. Время на совершение одного колебания называется периодом, а число периодов в секунду — частотой переменного электрического тока.



Немного из истории изобретения генератора.

Прототип генератора электрического тока, основанный на принципе электромагнитной индукции, был сконструирован Фарадеем в 1831 г. Он состоял из медного диска, вращающегося вручную между полюсами постоянного магнита. При этом в диске индуцировалась электродвижущая сила (ЭДС); полюсами служили ось диска и неподвижная щетка, имеющая скользящий контакт с краем диска. После этого были предложены различные конструкции электромагнитных генераторов. Магнито-электрические машины были изготовлены многими изобретателями: У. Риччи, И. Пикси, Ю. Кларком и др., но все они были трудно применимы для практического использования. По заказу А.М. Ампера в 1832 г. И. Пикси (1808-1835) изготовил первый электрический генератор с коммутатором для получения постоянного тока. Он приводился в движение вручную. В 1842 г. Д.С. Вулрич изготовил мощный генератор постоянного тока, соединив его ременной передачей с паровой машиной. Такой генератор использовали для питания гальванических ванн. 1842 год считается годом рождения электроснабжения предприятий. В 1856-1866 годах появилась идея самовозбуждения электрогенератора (без гальванического элемента). Многие исследователи, инженеры независимо друг от друга, раньше или позже пришли к этому: венгр А. Йедлик (1800-1895); немец Э.В. Сименс (1816-1892); англичане Г. Уайлд (1833-1919), С.А. Варли; американец М.Г. Фармер (1820-1893); датчанин С. Хьерт (1802-1870) и др. Промышленное освоение электрогенераторов началось после 1870 г., когда француз З. Грамм создал генератор с кольцевым ротором, тороидальной обмоткой и коллектором почти современной конструкции. А. Пачинотти (1841-1912) на 10 лет раньше построил подобный электродвигатель. В 1880 г. американец Т. Эдисон предложил делать магнитопровод якоря электрогенератора наборным из изолированных стальных листов. Это уменьшило потери и реакцию якоря. В 1884 г. была предложена компенсационная обмотка, а в 1885 г. дополнительные полюса для уменьшения реакции якоря и улучшения коммутации. Создание электрогенераторов и электродвигателей на постоянном токе решало многие вопросы существующей в то время энергетики, но передача энергии на дальние расстояния оказалась затруднительной. В 1876 г. П.Н.Яблочков создал дуговые лампы, которые гораздо эффективнее работали на переменном токе. Для питания нескольких дуговых ламп от одного источника Яблочков использовал индукционные катушки с ответвлениями – прообраз трансформатора или простейший трансформатор с разомкнутым сердечником. Введение переменного тока должно было позволить передавать электроэнергию с помощью повышающих трансформаторов напряжения на большие расстояния. Но теперь встал вопрос о создании генераторов переменного тока. Впервые идею вращающегося электромагнитного поля высказал Д. Араго в 1821 г. В 1885 г. Г. Феррарис. (1847-1897) предложил использовать двухфазный ток (систему двух переменных токов, сдвинутых по фазе на 90°), который дает возможность получить «вращающееся магнитное поле», и построил двигатель переменного тока. Н. Тесла (1856 – 1943), удалось построить систему из двухфазного генератора, трансформатора и двигателя. Она была использована на Ниагарской гидростанции в США, система требовала четыре провода для передачи электроэнергии. В 1888 году русский изобретатель М.О. Доливо-Добровольский (1862-1919), создал трехфазную систему токов, которая затем получила признание и распространилась во всем мире как наиболее удобная и экономичная. Вращающееся магнитное поле было получено путем сдвига фаз между токами одинаковой амплитуды на 120°. М.О. Доливо-Добровольский разработал ротор с обмоткой в виде беличьей клетки и создал короткозамкнутый асинхронный двигатель. Трехфазная система, состоящая изтрехфазного генератора, трехфазного двигателя, и трехфазного трансформатора, требовала для передачи и распределения электроэнергии всего три провода, являясь в то же время симметричной, уравновешенной и экономичной. Затраты металла были на 25 % меньше, чем в двухпроводной линии однофазной системы. Трехфазный синхронный генератор был построен Доливо-Добровольским в 1890 г. Впервые передача трехфазного тока на расстояние 170 км была продемонстрирована на Международной электротехнической выставке во Франкфурте-на-Майне в 1891 г. во время Международного конгресса электротехников. На базе электрических генераторов и электродвигателей стал конструироваться индивидуальный привод станков, механизмов и устройств. Первое защитное заземление электрических машин предложили русский инженер Р.Э. Классон и француз М. Депре. Генераторы электрического тока предъявили к первичному двигателю следующие требования: большое число оборотов, высокая равномерность вращения и непрерывно возрастающая мощность. Паровая машина уже не отвечала этим требованиям, Она имела 400-600 об/мин. Паровую машину вы теснила паровая турбина, которая имела большую скорость и более высокий КПД. Сейчас мощность паровых турбин достигает 1200 МВт. Турбина вместе с электрическим генератором называется турбогенератором.

 

 

Электрические машины, генерирующие переменный ток, были известны в простом виде со времён открытия магнитной индукции электрического тока. Ранние машины были разработаны Майклом Фарадеем и Ипполитом Пикси.

Фарадей разработал «вращающийся прямоугольник», действие которого было многополярным — каждый активный проводник пропускался последовательно через область, где магнитное поле было в противоположных направлениях. Первая публичная демонстрация наиболее сильной «альтернаторной системы» имела место в 1886 году. Большой двухфазный генератор переменного тока был построен британским электриком Джеймсом Эдвардом Генри Гордоном в 1882 году. Лорд Кельвин и Себастьян Ферранти также разработали ранний альтернатор, производивший переменный ток частотой между 100 и 300 герц. В 1891 году Никола Тесла запатентовал практический «высокочастотный» альтернатор (который действовал на частоте около 15000 герц). После 1891 года были изобретены многофазные альтернаторы.

Теория генератора переменного тока[править | править вики-текст]

В прямоугольном контуре вращается постоянный магнит.

Принцип действия генератора основан на законе электромагнитной индукции — индуцирование электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле. Или наоборот, прямоугольный контур вращается в однородном неподвижном магнитном поле.

Допустим, что однородное магнитное поле, создаваемое постоянным магнитом вращается вокруг своей оси в проводящем контуре (проволочной рамке) с равномерной угловой скоростью . Две равные порознь вертикальные стороны контура (см. рисунок) являются активными, так как их пересекают магнитные линии магнитного поля. Две равные порознь горизонтальные стороны контура — не активные, так как магнитные линии магнитного поля их не пересекают, магнитные линии скользят вдоль горизонтальных сторон, электродвижущая сила в них не образуется.

Особенности и устройство генераторов постоянного тока[править | править вики-текст]

Рис. 2 Рамка с током вращается в магнитном поле, токосъём происходит щётками с полуколец.

Рис. 3 Переменный синусоидальный ток Пульсирующий ток, снимаемый с двух полуколец Выпрямленный и сглаженный ток, снимаемый с якоря с большим количеством контуров и коллекторных пластин

В генераторах постоянного тока неподвижны магниты, создающие магнитное поле и называемые катушками возбуждения, а вращаются катушки, в которых индуктируется электродвижущая сила и с которых производится съём тока. Другая, главная особенность, состоит в способе съёма тока с катушек, который основан на том, что если концы активных сторон контура присоединить не к контактным кольцам (как это делается в генераторах переменного тока), а к полукольцам с изолированными промежутками между ними (как показано на рисунке 2) то тогда рамка с током будет давать во внешнюю цепь выпрямленное электрическое напряжение.

При вращении контура вместе с ним вращаются и полукольца вокруг их общей оси. Токосъём с полуколец осуществляется щётками. Так как щётки неподвижны, то они попеременно соприкасаются то с одним, то с другим полукольцом. Обмен полукольцами происходит в тот момент, когда синусоидальная электродвижущая сила в контуре переходит через своё нулевое значение. В результате каждая щётка сохраняет свою полярность неизменной. Если на полукольцах имеется некоторое синусоидальное напряжение, то на щётках оно уже становится выпрямленным (в данном случае пульсирующим). На практике в генераторах постоянного тока применяют не один проволочный контур, а значительно их большее количество, вывод от каждого конца каждого контура присоединяется к собственной контактной пластине, отделённой от соседних пластин изолирующими промежутками. Совокупность контактных пластин и изолирующих промежутков называется колле́ктор, контактная пластина носит название колле́кторная пласти́на. Весь узел в сборе (коллектор, щётки и держатели щёток) называется щёточно-колле́кторный у́зел. Материал, из которого изготавливают изолятор между коллекторными пластинами подбирается таким образом, чтобы еготвёрдость приблизительно равнялась твёрдости коллекторных пластин (для равномерного износа). Применяется, как правило, миканит (прессованная слюда). Коллекторные пластины, как правило, изготавливают из меди.

Ярмо (статор) шестиполюсного генератора постоянного тока. Видны полюсные наконечники особой формы.

Якорь генератора постоянного тока, цилиндр среднего диаметра — коллектор.

Остов (статор) генератора называется ярмо́. К ярму прикреплены сердечники электромагнитов, крышки с подшипниками, в которых вращается вал генератора. Ярмо изготавливается из ферромагнитного материала (литая сталь). На сердечники электромагнитов насажены катушки возбуждения. Чтобы придать магнитным линиям магнитного поля необходимое направление, сердечники электромагнитов снабжаются полюсными наконечниками. Электромагниты, питаемые постоянным током (током возбуждения) создают в генераторе магнитное поле. Катушка возбуждения состоит из витков медной изолированной проволоки, намотанной на каркас. Обмотки катушек возбуждения соединены друг с другом последовательно таким образом, что любые два соседних сердечника имеют разноимённую магнитную полярность.

Вращающаяся часть генератора (ротор) называется я́корь. Сердечник якоря изготавливается из электротехнической стали. Во избежание потерь на вихревые токи сердечник якоря собирается из отдельных стальных листов зубчатой формы, которые образуют впадины (пазы). Во впадины укладывается якорная (силовая) обмотка. В маломощных генераторах якорная обмотка изготавливается из медной изолированной проволоки, в мощных — из медных полос прямоугольной формы. Чтобы под действием центробежных сил якорная обмотка не была вырвана из пазов её закрепляют на сердечнике бандажами. Обмотка якоря наносится на сердечник так, что каждые два активных проводника, соединённых непосредственно и последовательно друг с другом, лежат под разными магнитными полюсами. Обмотка называется волновой, если провод проходит поочерёдно под всеми полюсами и возвращается к исходному полюсу, и петлевой, если провод, пройдя под «северным» полюсом, а затем под соседним «южным» полюсом, возвращается на прежний «северный» полюс.

Чтобы пластины коллектора и изолирующие миканитовые (слюдяные) пластины между ними не были вырваны центробежными силами из своих гнёзд — в нижней части они имеют крепление «ласточкин хвост».

Щётки, как правило, изготавливают из графита. Минимальное число щёток в генераторе постоянного тока равно двум: одна является положительным полюсом генератора (положительная щётка), другая — отрицательным полюсом (отрицательная щётка). В многополюсных генераторах число пар щёток обычно равняется числу пар полюсов, что обеспечивает лучшую работу генератора. Щётки одинаковой полярности (одноимённые щётки) электрически соединены друг с другом.

Щётка одновременно перекрывает две или три коллекторные пластины, это уменьшает искрение на коллекторе под щётками (улучшается коммутация).

Щёткодержатель обеспечивает постоянный прижим щёток вогнутой стороной к цилиндрической поверхности коллектора.

Реакция якоря[править | править вики-текст]

Результирующее магнитное поле.

Если генератор постоянного тока не нагружен (холостой ход генератора), то магнитное поле статора (обмоток возбуждения) симметрично относительно оси полюсов SN и геометрической нейтрали (на рисунке обозначено Normal neutral plane). Когда генератор нагружен, то через его якорную обмотку протекает электрический ток и создаёт своё собственное магнитное поле. Магнитные поля статора и ротора накладываются друг на друга и образуют результирующее магнитное поле.

Там, где якорь при своём вращении набегает на полюс электромагнита (магнита) статора, там результирующее поле слабее, там, где сбегает — сильнее. Это объясняется тем, что в первом случае магнитные поля имеют различные направления, а во втором — одинаковые. Если отсутствует магнитное насыщение стали в магнитопроводах — тогда считается что результирующий магнитный поток не изменился по величине.

Однако по конфигурации результирующий магнитный поток значительно изменился, чем больше нагружен генератор и чем больше магнитное насыщение стали в магнитопроводах — тем сильнее проявляется реакция якоря и происходит некоторое уменьшение магнитного потока.

В результате электродвижущая сила генератора уменьшается и наблюдается искрение под щётками на коллекторе.

На практике с реакцией якоря борются:

1. применяя дополнительные магнитные полюса, компенсирующие магнитное поля якоря;

2. сдвигая щётки с геометрической нейтрали (Normal neutral plane) за физическую нейтраль (Actual neutral plane), устанавливая их и разворачивая на некоторый угол (на рисунке обозначено Commutating plane), что предупреждает искрение под щётками.

 


Дата добавления: 2015-08-27; просмотров: 128 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Иван Сергеевич Тургенев 14 страница | Министерство образования калининградской области

mybiblioteka.su - 2015-2024 год. (0.012 сек.)