Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Ковка - вид горячей обработки металлов давлением, при котором металл деформируется с помощью универсального инструмента. Нагретую заготовку (см. рис. 3.15, д) укладывают на нижний боек 3 и верхним



КОВКА

 

1. СУЩНОСТЬ ПРОЦЕССА

Ковка - вид горячей обработки металлов давлением, при котором металл деформируется с помощью универсального инструмента. Нагретую заготовку (см. рис. 3.15, д ) укладывают на нижний боек 3 и верхним бойком 2 последовательно деформируют отдельные ее участки. Металл свободно течет в стороны, не ограниченные рабочими поверхностями инструмента, в качестве которого применяют плоские или фигурные (вырезные) бойки, а также различный подкладной инструмент.

Ковкой получают заготовки для последующей механической обработки. Эти заготовки называют коваными поковками, или просто поковками.

Ковка является единственно возможным способом изготовления тяжелых поковок (до 250 т) Поковки меньшей массы (десятки и сотни килограммов) можно изготовлять и ковкой, и штамповкой. Хотя штамповка имеет ряд преимуществ перед ковкой, в единичном и мелкосерийном производствах ковка обычно экономически более целесообразна. Объясняется это тем, что при ковке используют универсальный (годный для изготовления различных поковок) инструмент, а изготовление специального инструмента (штампа) при небольшой партии одинаковых поковок экономически невыгодно. Исходными заготовками для ковки тяжелых крупных поковок служат слитки массой до 320 т. Поковки средней и малой массы изготовляют из блюмов и сортового проката квадратного, круглого или прямоугольного сечений

 

2. ОСНОВНЫЕ ОПЕРАЦИИ КОВКИ И ПРИМЕНЯЕМЫЙ ИНСТРУМЕНТ

 

Процесс ковки состоит из чередования в определенной последовательности основных и вспомогательных операций. Каждая операция определяется характером деформирования и применяемым инструментом. К основным операциям ковки относятся осадка, протяжка, прошивка, отрубка, гибка.

Осадка - операция уменьшения высоты заготовки при увеличении площади ее поперечного сечения (рис. 3.14, а). Осадкой не рекомендуется деформировать заготовки, у которых отношение высоты hзаг к диаметру d загбольше 2,5, так как в этом случае может произойти продольное искривление заготовки. Осаживают заготовки между бойками или подкладными плитами.

Разновидностью осадки является высадка (рис. 3.14, б), при которой металл осаживают лишь на части длины заготовки.

Протяжка - операция удлинения заготовки или ее части за счет уменьшения площади поперечного сечения (рис. 3.15, а). Протяжку производят последовательными ударами или нажатиями на отдельные участки заготовки, примыкающие один к другому, с подачей заготовки вдоль оси протяжки и поворотами ее на 90° вокруг этой оси. При каждом нажатии уменьшается высота сечения, увеличиваются ширина и длина заготовки. Общее увеличение длины равно сумме приращений длин за каждое нажатие, а уширение по всей длине одинаково. Если заготовку повернуть на 90° вокруг горизонтальной оси и повторить протяжку, то уширение, полученное в предыдущем проходе, устраняется, а длина заготовки снова увеличивается. Чем меньше подача при каждом нажатии, тем интенсивнее удлинение. Однако при слишком малой подаче могут получиться зажимы (рис. 3.15, б)



Протягивать можно плоскими (рис. 3.15, а) и вырезными (рис. 3.15, в) бойками. При протяжке на плоских бойках в центре изделия могут возникнуть (особенно при протяжке круглого сечения) значительные растягивающие напряжения, которые приводят к образованию осевых трещин. При протяжке с круга на круг в вырезных бойках силы, направленные с четырех сторон к осевой линии заготовки, способствуют более равномерному течению металла и устранению возможности образования осевых трещин.

Деформация при протяжке может быть выражена величиной уковки:

 

 

где fн - начальная (большая) площадь поперечного сечения; FK -.- конечная (меньшая) площадь поперечного сечения после протяжки.

Очевидно, чем больше уковка, тем лучше прокован металл, тем выше его механические свойства. Поэтому протяжку применяют применяют не только для получения поковок с удлиненной осью (валы, рычаги, тяги и т. п.), но и в чередовании с осадкой - для большей уковки металла заготовки.

Протяжка имеет ряд разновидностей.

Разгонка - операция увеличения ширины части заготовки за счет уменьшения ее толщины (рис. 3.15, г).

Протяжка с оправкой - операция увеличения длины пустотелой заготовки за счет уменьшения толщины ее стенок (рис. 3.15, д). Протяжку выполняют в вырезных бойках (или нижнем вырезном 3 и верхнем плоском 2) на слегка конической оправке1 . Протягивают в одном направлении - к расширяющемуся концу оправки, что облегчает ее удаление из поковки.

Раскатка на оправке - операция одновременного увеличения наружного и внутреннего диаметров кольцевой заготовки за счет уменьшения толщины ее стенок (рис. 3.15, е). Заготовка 5 опирается внутренней поверхностью на цилиндрическую оправку 6, устанавливаемую концами на подставках 7, и деформируется между оправкой и узким длинным бойком 4. После каждого нажатия заготовку поворачивают относительно оправки.

Протяжку с оправкой и раскатку на оправке часто применяют совместно. Вначале раскаткой уничтожают бочкообразность предварительно осаженной и прошитой заготовки и доводят ее внутренний диаметр до требуемых размеров. Затем протяжкой с оправкой уменьшают толщину стенок и увеличивают до заданных размеров длину поковки.

Прошивка - операция получения полостей в заготовке за счет вытеснения металла (рис. 3.16, а). Прошивкой можно получить сквозное отверстие или углубление (глухая прошивка). Инструментом для прошивки служат прошивни (рис. 3.16, в) сплошные и пустотелые; последними прошивают отверстия большого диаметра (400-900 мм). При сквозной прошивке сравнительно тонких поковок применяют подкладные кольца (рис. 3.16, б). Более толстые поковки прошивают с двух сторон без подкладного кольца (рис. 3.16, а). Диаметр прошивня выбирают не более 1/2-1/3 наружного диаметра заготовки; при большем диаметре прошивня заготовка значительно искажается. Прошивка сопровождается отходом (выдрой).

Отрубка - операция отделения части заготовки по незамкнутому контуру путем внедрения в заготовку деформирующего инструмента - топора (рис. 3.16, г). Отрубку применяют для получения из заготовок большой длины нескольких коротких, для удаления излишков металла на концах поковок, а также прибыльной и донной частей слитка и т. п. Инструмент для отрубки - топоры различной формы (рис. 3.16, д).

Гибка - операция придания заготовке изогнутой формы по заданному контуру (рис. 3.16, с). Этой операцией получают угольники, скобы, крючки, кронштейны и т. п. Гибка сопровождается искажением первоначальной формы поперечного сечения заготовки и уменьшением его площади в зоне изгиба, называемым утяжкой. Для компенсации утяжки в зоне изгиба заготовке придают увеличенные поперечные размеры. При гибке возможно образование складок по внутреннему контуру и трещин по наружному. Во избежание этого явления по заданному углу изгиба подбирают соответствующий радиус скругления.

Перечисленными операциями ковки трудно изготовить поковки с относительно сложной конфигурацией. Поэтому при изготовлении небольшой партии таких поковок применяют так называемую штамповку в подкладных штампах (рис. 3.16, ж). Подкладной штамп может состоять из одной или двух частей, в которых имеется полость с конфигурацией поковки или ее отдельного участка. В подкладных штампах можно изготовлять головки болтов, диски со ступицей, втулки с буртом и другие поковки.

3. ОБОРУДОВАНИЕ ДЛЯ КОВКИ

Ковку выполняют на ковочных молотах и ковочных гидравлических прессах.

Молоты - машины динамического, ударного действия. Продолжительность деформации на них составляет тысячные доли секунды. Металл деформируется за счет энергии, накопленной подвижными (падающими) частями молота к моменту их соударения с заготовкой. Поэтому при выборе молотов руководствуются массой их падающих частей. Энергия, накопленная падающими частями, не вся расходуется на деформирование заготовки. Часть ее теряется на упругие деформации инструмента и колебания шабота - детали молота, на которую устанавливают нижний боек. Чем больше масса шабота, тем больше КПД. Практически масса шабота бывает в 15 раз больше массы падающих частей, что обеспечивает КПД удара ηуд = 0,8-0,9.

Одним из основных типов молотов для ковки являются паро-воздушные молоты. Такие молоты приводятся в действие паром или сжатым воздухом давлением 0,7-0,9 МПа. В зависимости от конструкции станины паро-воздушные ковочные молоты бывают арочные, мостовые и одностоечные.

На станине 4 арочного молота (рис. 3.17) смонтирован рабочий цилиндр 1 с парораспределительным устройством //. При нажатии педали или рукоятки управления сжатый пар или воздух по каналу 12 поступает в верхнюю полость цилиндра / и давит на поршень 2, соединенный штоком 3 с бабой 5, к которой прикреплен верхний боек 6. В результате падающие части 2, 3, 5 и 6 перемещаются вниз и наносят удар по заготовке, уложенной на нижний боек 7, неподвижно закрепленный на массивном шаботе 8. При подаче сжатого пара по каналу 10 - в нижнюю полость цилиндра 1 падающие части поднимаются в верхнее положение. Перемещение бабы 5 происходит в направляющих 9. В ковочных молотах станина 4 и шабот 8 закреплены на фундаменте по отдельности, так как для того, чтобы манипулировать заготовками и кузнечным инструментом, необходимо иметь доступ к бойкам со всех сторон.

Молоты могут совершать удары с разной энергией, зажимать поковки между бойками и удерживать бабу на весу. Ковочные паро-воздушные молоты строят с массой падающих частей 1000-8000 кг. На этих молотах изготовляют поковки средней массы (20-350 кг), преимущественно из прокатанных заготовок.

Гидравлические прессы - машины статического действия; продолжительность деформации на них может составлять от единиц до десятков секунд. Металл деформируется приложением усилия, создаваемого с помощью жидкости (водной эмульсии или минерального масла), подаваемой в рабочий цилиндр пресса. Ковочные гидравлические прессы строят усилием 5-100 МН для изготовления крупных поковок в основном из слитков.

4. ТЕХНОЛОГИЧЕСКАЯ РАЗРАБОТКА ПРОЦЕССА

Чертеж поковки составляют на основании чертежа готовой детали с учетом припусков, допусков и напусков (рис. 3.18). Припуск 2 - поверхностный слой металла поковки, подлежащий удалению обработкой резанием для получения требуемых размеров и качества поверхности готовой детали /. Размеры детали увеличивают на величину припусков в местах, которые подлежат обработке резанием. Припуск 2 зависит от размеров поковки, ее конфигурации, типа оборудования, применяемого для изготовления поковки и других факторов. Чем больше размеры поковки, тем больше припуск.

Допуск 4 - допустимое отклонение от номинального размера поковки, проставленного на ее чертеже, т. е. разность между наибольшим и наименьшим предельными размерами поковки. Допуск назначают на все размеры поковки.

'Конфигурацию поковки иногда упрощают за счет напусков 3 - объема металла, добавляемого к поковке сверх припуска для упрощения ее формы и, следовательно, процесса ковки. Напуски 3 удаляют последующей обработкой резанием. Припуски, допуски и напуски назначают в строгом соответствии с ГОСТом.

Выбор заготовки осуществляют по ее массе, которая может быть подсчитана по формуле

 

 

где mзаг - масса исходной заготовки; тпок - масса поковки, подсчитываемая как произведение объема поковки на плотность металла; mпр - масса отхода с прибыльной частью слитка; тдн - масса отхода с донной частью слитка; mуг - масса отхода на угар (окалинообразование) при нагреве; mот - масса технологических отходов.

Отходы с прибыльной частью составляют 14-30 %, а с донной 4-7 %; на угар - в среднем 2-2,5 % массы нагреваемого металла при нагреве холодной заготовки и ~1,5 % при каждом подогреве. Технологические отходы (обрубки, выдры и т. п.) зависят от формы поковки и принятой последовательности ковки. При ковке из прокатанной заготовки mпр и mдн отсутствуют. Размеры поперечного сечения заготовки выбирают с учетом обеспечения необходимой уковки. Достаточной уковкой для слитков считается 2,5-3, а для проката можно принимать 1,3-1,5.

Выбор оборудования для ковки осуществляют в зависимости от режима ковки данного металла или сплава, массы поковки и ее конфигурации. Необходимую мощность оборудования обычно определяют по приближенным формулам или справочным таблицам.

Последовательность операций ковки устанавливают в зависимости от конфигурации поковки и технологических требований на нее, вида заготовки (слиток или прокат).

Технологические требования к деталям, получаемым из кованых поковок, сводятся главным образом к тому, что поковки должны быть наиболее простыми, очерченными цилиндрическими поверхностями и плоскостями (рис. 3.20, 1-4). В поковках следует избегать конических (рис. 3.20, 5) и клиновых (рис. 3.20, 6) форм. Необходимо учитывать трудность выполнения ковкой участков пересечений цилиндрических поверхностей между собой (рис. 3.20, 7) и с призматическими поверхностями (рис. 3.20, 8). В поковках следует избегать ребристых сечений, бобышек, выступов и т. п., учитывая, что эти элементы в большинстве случаев изготовить ковкой невозможно. В местах сложной конфигурации приходится прибегать к напускам в целях упрощения конфигурации поковки, что вызывает удорожание детали. Кроме того, следует стремиться, чтобы конфигурация детали позволяла получать при ковке наиболее благоприятное расположение волокон.

Технологические особенности ковки высоколегированных сталей и цветных металлов обусловлены их технологическими свойствами. Высоколегированные стали склонны к интенсивному упрочнению, поэтому для их ковки целесообразнее использовать пресс, а не молот. Ввиду малой скорости деформирования на прессах разупрочняющие процессы, возврат и рекристаллизация, успевают произойти полнее, и упрочнение снижается.

Для каждой марки сталей необходимо выбирать определенную суммарную уковку, чтобы получить хорошее качество поковок. Ввиду того что высоколегированные стали имеют пониженную пластичность, нужно выбирать такие приемы ковки, при которых значительно снижаются растягивающие напряжения. Особенно осторожно следует ковать литую заготовку, так как литая структура менее пластична, чем деформированная.

Последнее относится и ко всем алюминиевым сплавам, Например, предварительно деформированные прутки из сплавов АК5 и АК6 можно подвергать ковке, тогда как слитки этих сплавов при ковке разрушаются. Алюминиевые сплавы, имеющие хорошую пластичность (АЛ1, Д1, АК2 и др.). куют на молотах и гидравлических прессах без особых ограничений. Малопластичные алюминиевые сплавы (АКЗ, В93 и др.) предпочтительней ковать на гидравлических прессах в вырезных бойках, так же как малопластичные магниевые сплавы (МАЗ). На гидравлических прессах с невысокой скоростью деформирования можно ковать и магниевые сплавы, обладающие хорошей пластичностью (МА1, МА2).

Титан и титановые сплавы имеют достаточно высокую пластичность и обрабатываются всеми применяемыми способами ковки. Но в случае динамического деформирования под молотом пластичность титановых сплавов снижается. Труднодеформируемые титановые сплавы протягивают в вырезных бойках.

Механизация ковки - важная задача улучшения условий труда и повышения производительности, так как ковка - трудоемкий и малопроизводительный процесс. При ковке массивных поковок многие операции вообще не могут быть осуществлены вручную.

Для посадки заготовок (слитков) в печь и выдачи их из печи кроме мостовых и консольно-поворотных кранов применяют специальные посадочные машины напольного или подвесного типов. Ковку на прессах и молотах можно механизировать с помощью различных кранов, кантователей и манипуляторов.

Начинают применять автоматизированные процессы ковки, при которых работа пресса и манипулятора управляется электронными устройствами по заданной программе. Для повышения точности поковок находят применение устройства (фотоэлементы, датчики с радиоактивными изотопами), регламентирующие положение рабочего инструмента в заключительный момент ковки.

 

ГЛАВА V ГОРЯЧАЯ ОБЪЕМНАЯ ШТАМПОВКА

I. СУЩНОСТЬ ПРОЦЕССА

Горячая объемная штамповка - это вид обработки металлов давлением, при котором формообразование поковки из нагретой заготовки осуществляют с помощью специального инструмента - штампа. Течение металла ограничивается поверхностями полостей (а также выступов), изготовленных в отдельных частях штампа, так что в конечный момент штамповки они образуют единую замкнутую полость (ручей) по конфигурации поковки.

В качестве заготовок для горячей штамповки в подавляющем " большинстве случаев применяют прокат круглого, квадратного, прямоугольного профилей, а также периодический. При этом прутки разрезают на отдельные (мерные) заготовки, хотя иногда штампуют из прутка с последующим отделением поковки непосредственно на штамповочной машине. Мерные заготовки отрезают от прутка различными способами: на кривошипных прессножницах, механическими пилами, газовой резкой и т. д.

По сравнению с ковкой штамповка имеет ряд преимуществ. Горячей объемной штамповкой можно получать поковки сложной конфигурации без напусков, что при ковке невозможно. Допуски на штампованную поковку в 3-4 раза меньше, чем на кованую. Вследствие этого значительно сокращается объем последующей обработки резанием. Штампованные поковки обрабатывают только в местах сопряжения с другими деталями, и эта обработка может сводиться только к шлифованию.

Производительность штамповки значительно выше - десятки и сотни поковок в час.

В то же время штамп - дорогостоящий инструмент и пригоден только для изготовления какой-то одной, конкретной поковки. В связи с этим штамповка экономически целесообразна лишь при изготовлении достаточно больших партий одинаковых поковок.

Кроме того, для объемной штамповки поковок требуются гораздо большие усилия деформирования, чем для ковки таких же поковок. Поковки массой в несколько сот килограммов для штамповки считаются крупными. В основном штампуют поковки массой 20-30 кг и только с отдельных случаях - массой до 3 т.

Горячей объемной штамповкой изготовляют заготовки для ответственных деталей самолетов, станков и т. д.

Конфигурация поковок чрезвычайно разнообразна, в зависимости от нее поковки обычно подразделяют на две группы: удлиненной формы, характеризующиеся большим отношением длины к ширине и короткие круглого или квадратного сечения.

2. СПОСОБЫ ГОРЯЧЕЙ ОБЪЕМНОЙ ШТАМПОВКИ

Наличие большого разнообразия форм и размеров штампованных поковок, а также сплавов, из которых их штампуют, обусловливает существование различных способов штамповки.

Так как характер течения металла в процессе штамповки определяется типом штампа, то этот признак можно считать основным для классификации способов штамповки. В зависимости от типа штампа выделяют штамповку в открытых и закрытых штампах.

Штамповка в открытых штампах (рис. 3.22, а) характеризуется переменным зазором между подвижной и неподвижной частями штампа. В этот зазор вытекает заусенец (облой), который закрывает выход из полости штампа и заставляет металл целиком заполнить всю полость. В конечный момент деформирования в заусенец выжимаются излишки металла, находящиеся в полости, что позволяет не предъявлять особо высоких требований к точности заготовок по массе. Заусенец затем обрезается в специальных штампах. Штамповкой в открытых штампах получают поковки всех типов (см. рис. 3.21, а, б).

Штамповка в закрытых штампах (рис. 3.22, б, в) характеризуется тем, что полость штампа в процессе деформирования остается закрытой. Зазор между подвижной и неподвижной частями штампа при этом постоянный и небольшой, так что образование заусенца в нем не предусмотрено. Устройство таких штампов зависит от типа машины, на которой штампуют. Например, нижняя половина штампа может иметь полость, а верхняя - выступ (на прессах), или наоборот (на молотах). Закрытый штамп может иметь не одну, а две взаимно перпендикулярные плоскости разъема, т. е. состоять из трех частей (рис. 3.22, в).

При штамповке в закрытых штампах необходимо строго соблюдать равенство объемов заготовки и поковки, иначе при недостатке металла не заполнятся углы полости штампа, а при избытке размер поковки по высоте будет больше требуемого. Следовательно, в этом случае процесс получения заготовки усложняется, поскольку отрезка заготовок должна обеспечивать высокую точность. Как правило, штамповкой в закрытых штампах получают поковки, показанные на рис. 3.21, б.

Существенное преимущество штамповки в закрытых штампах - уменьшение расхода металла, поскольку нет отхода в заусенец. Поковки, полученные в закрытых штампах, имеют более благоприятную макроструктуру, так как волокна обтекают контур поковки, а не перерезаются в месте выхода металла в заусенец. При штамповке в закрытых штампах металл деформируется в условиях всестороннего неравномерного сжатия при больших сжимающих напряжениях, чем в открытых штампах. Это позволяет получать большие степени деформации и штамповать малопластичные сплавы.

К штамповке в закрытых штампах можно отнести штамповку выдавливанием и прошивкой, так как штамп в этих случаях выполняют по типу закрытого и отхода в заусенец не предусматривают.

3. ПРОЕКТИРОВАНИЕ ПОКОВКИ

Схема технологического процесса штамповки в основном определяется конфигурацией и размером детали, которую нужно получить. По чертежу детали составляют чертеж поковки.

При получении поковки в открытом штампе прежде всего необходимо правильно выбрать поверхность разъема, т. е. поверхность, по которой соприкасаются между собой верхняя и нижняя половины штампа. Обычно эта поверхность является плоскостью или сочетанием плоскостей. Плоскость разъема должна быть выбрана такой, чтобы поковка свободно вынималась из штампа. В целях облегчения заполнения металлом полости штампа желательно выбрать плоскость разъема таким образом, чтобы полости штампов имели наименьшую глубину. При штамповке возможен сдвиг одной половины штампа относительно другой. Чтобы такой сдвиг можно было легко контролировать, плоскость разъема должна пересекать вертикальную поверхность поковки (рис. 3.23).

Припуски на механическую обработку назначают главным образом на сопрягаемые поверхности детали. Припуск зависит от габаритных размеров и массы поковки, от вида оборудования штамповки, шероховатости обрабатываемой поверхности детали; припуск выбирают по ГОСТу. Допуски на штамповку назначают также по ГОСТу; допуски учитывают возможные отклонения от номинальных размеров вследствие недоштамповки по высоте, сдвига штампов, их износа и т. п.

Для облегчения заполнения полости штампа и извлечения из нее поковки боковые поверхности последней должны иметь штамповочные уклоны. Штамповочные уклоны назначают сверх припуска; они повышают отход металла при механической обработке и утяжеляют поковку. Уклон зависит от глубины и сложности полости, применяемого для штамповки оборудования и колеблется для стальных поковок в пределах 3-10°. Для наружных поверхностей поковки (вследствие температурной усадки) штамповочные уклоны а принимают меньшими, чем для внутренних р (рис. 3.24).

Все пересекающиеся поверхности поковки сопрягаются по радиусам. Это необходимо для лучшего заполнения полости штампа и предохранения его от преждевременного износа и поломок. Радиусы скругления зависят от глубины полости. Внутренние радиусы R скругления в 3-4 раза больше, чем наружные радиусы г (см. рис. 3.24). Наружные радиусы скругления г составляют обычно 1-6 мм.

При штамповке в штампах с одной плоскостью разъема нельзя получить сквозное отверстие в поковке, поэтому наносят только наметку отверстия с перемычкой-пленкой, удаляемой впоследствии в специальных штампах. Штамповкой не всегда можно получить полностью требуемую конфигурацию поковки. Поэтому на отдельных участках поковок могут быть сделаны напуски, упрощающие форму. В частности, при диаметрах отверстия меньше 30 мм наметки в поковках не делают.

Изменив все размеры спроектированной поковки на величину усадки, получают чертеж горячей поковки, по которому изготовляют полость штампа.

При штамповке в открытых штампах вдоль внешнего контура полости выполняют специальную заусенечную канавку, Для обеспечения хорошего заполнения металлом полости штампа и повышения его стойкости особенно большое значение имеет толщина заусенца 1га, которую, как и другие размеры заусенечной канавки, подсчитывают по формулам в зависимости от конфигурации поковки.

Чертеж поковки при штамповке в закрытых штампах с одной плоскостью разъема составляют так же, как при штамповке в открытых. Но плоскость разъема выбирают по торцовой наибольшей поверхности детали (см. рис. 3.24, в). Составление чертежа поковки при штамповке в закрытых штампах с двумя взаимно перпендикулярными плоскостями разъема имеет свои специфические особенности. Прежде всего наличие двух плоскостей разъема не требует на поковках напусков там, где они необходимы в штампах с одной плоскостью разъема (рис. 3.24, г). Штамповочные уклоны назначают значительно меньшего размера или их можно совсем не предусматривать.

Поскольку штампованные поковки, как правило, обрабатывают только по сопрягаемым поверхностям, а большинство поверхностен впоследствии не обрабатываются, то уже при проектировании самой детали конструктор должен учитывать особенности процесса штамповки. Прежде всего необходимо представить, как будет происходить разъем штампа. Например, деталь, показанную на рис. 3.25, нельзя штамповать без очень больших напусков, так как невозможно выбрать разъем штампа, допускающий извлечение поковки. В таком случае желательно изменить конструкцию детали. Заранее установить плоскость разъема необходимо еще и потому, что от этого зависят другие элементы конструкции детали (углы наклона стенок, радиусы скруглений и др.). При проектировании детали следует стремиться к возможно меньшей разности в площадях поперечных сечений на различных участках длины детали, избегать тонких стенок, высоких ребер, длинных отростков и тонких приливов, примыкающих к плоскости разъема.

Необходимо проверять в каждом отдельном случае целесообразность изготовления деталей из двух или нескольких частей с последующей сваркой и, наоборот, целесообразность объединения в одной поковке смежных деталей.

4. СПОСОБЫ ПОЛУЧЕНИЯ ЗАГОТОВКИ

Поковки простой конфигурации, не имеющие большой разности сечений по длине (высоте), обычно штампуют в штампах с одной полостью, т. е. в одноручьевых штампах. Поковки сложной конфигурации с резкими изменениями сечений по длине, с изогнутой осью штамповать в одноручьевом штампе из прокатанных заготовок постоянного профиля невозможно (или штамповка сопровождается недопустимо большим отходом в заусенец).

В этом случае форму заготовки следует приблизить к форме поковки, прежде чем производить окончательное формообразование в штамповочном ручье, т. е. необходимо получить профилированную или фасонную заготовку.

При штамповке небольшой партии поковок фасонную заготовку.можно получить ковкой, однако производительность такого способа низка.

При изготовлении очень большого числа одинаковых поковок значительного экономического эффекта достигают применением фасонных заготовок из периодического проката. В этом случае пруток с периодически повторяющимся профилем сечения состоит из элементов однотипных конфигураций, каждый из которых представляет собой подготовленную для штамповки заготовку.

 

 

Диаметр исходного прутка зависит от конфигурации поковки. Так как операцию протяжки на горизонтально-ковочной машине не производят, площадь поперечного сечения прутка должна быть не больше минимальной площади поперечного сечения поковки,

Точность поковок и производительность штамповки не ниже, чем в случае использования кривошипных горячештамповочных прессов. Несмотря на указанные преимущества, горизонтально-ковочные машины менее универсальны (по сравнению с молотами и прессами), имеют более высокую стоимость.

Гидравлические штамповочные прессы по своему устройству принципиально не отличаются от ковочных. Усилие современных гидравлических штамповочных прессов достигает 750 МН.

На гидравлических прессах штампуют поковки типа дисков, коленчатых валов, различного рода рычагов, кронштейнов, сферических днищ, цилиндрических стаканов. Особое значение имеет штамповка на гидравлических прессах крупногабаритных панелей и рам из легких сплавов в самолетостроении. Исходной заготовкой является прокат (в том числе листовой) и полуфабрикат ковки. Перед закладкой в штамп нагретая заготовка должна быть очищена от окалины.

Штампуют в открытых и закрытых штампах (с одной и двумя плоскостями разъема), как правило, в одном ручье.

На гидравлических прессах осуществляют изотермическую штамповку. При этом способе горячее деформирование происходит в изотермических условиях, когда штампы и окружающее их ограниченное пространство нагреваются до температуры деформации сплава. Чтобы обеспечить наиболее полное протекание разупрочняющих процессов во время деформации, штампуют при низких скоростях деформирования. Температура нагрева рабочей зоны установки и штампов, изготовляемых из жаропрочного сплава, может достигать 900 °С. Для нагрева используют индукторы, встроенные в установку.

Изотермическая штамповка значительно повышает пластичность деформируемого сплава и снижает усилия деформирования.

 

6. СПЕЦИАЛИЗИРОВАННЫЕ ПРОЦЕССЫ ПОЛУЧЕНИЯЗАГОТОВОК

Штамповка на ковочных вальцах напоминает продольную прокатку в одной рабочей клети, на двух валках которой закрепляют секторные штампы, имеющие соответствующие ручьи (рис. 3.31, а).

Нагретую заготовку / подают до упора 2 в тот момент, когда секторные штампы 3 расходятся. При повороте валков происходит захват заготовки и обжатие ее по форме полости; одновременно с обжатием заготовка выталкивается в сторону подачи.

Исходное сечение заготовки принимают равным максимальному сечению поковки, так как при вальцовке происходит главным образом протяжка.

Штамповка на ротационно-ковочных машинах подобна операции протяжки и заключается в местном обжатии заготовки по ее периметру. Заготовку / (рис. 3.31, б) в виде прутка или трубы помещают в отверстие между бойками 7 машины, находящимися в шпинделе 6. Бойки могут свободно скользить в радиально расположенных пазах шпинделя. При вращении шпинделя ролики 5, помещенные в обойме 4, толкают бойки 7, которые наносят удары по заготовке. В исходное положение бойки возвращаются под действием центробежных сил. В машинах этого типа получают поковки, имеющие форму тел вращения. Существуют машины, у которых вместо шпинделя с бойками вращается обойма с роликами; в этом случае для возвратного движения ползунов служат пружины. В таких машинах получают поковки квадратного, прямоугольного и других сечений.

Поперечно-клиновой прокаткой (рис. 3.32, а) получают заготовки валов и осей (рис. 3.32, б) диаметром до 100 мм и длиной до 700 мм. Деформирование может осуществляться инструментом в виде двух валков, валка и сегмента или двух плоских плит. Плоскоклиновой инструмент наиболее прост в изготовлении и обеспечивает получение валов сложной конфигурации с высокой точностью: допуски на диаметральные размеры 0,2- 0,4 мм, на линейные 0,3-0,5 мм. Заготовка 2 из круглого прокатанного прутка, после нагрева автоматически перемещается в рабочую зону клиньев / в их исходном положении. Клиновой инструмент, закрепленный в подвижной салазке стана, совершает прямолинейное движение, и заготовка прокатывается между двумя клиновыми плитами (см. рис. 3.32, а),

Раскатка кольцевых заготовок на раскаточных машинах получила особенно большое распространение при производстве колец подшипников. Схема процесса показана на рис. 3.32, в. Заготовка 1 представляет собой кольцо с меньшим диаметром и большей толщиной стенки, чем у поковки. Заготовки под раскатку получают штамповкой на горизонтально-ковочных машинах или на молотах. При подведении к заготовке /, надетой на валок 2, быстро вращающегося валка 3 заготовка и валок 2 начинают вращаться. При дальнейшем сближении валков 2 и 3 увеличивается наружный диаметр заготовки за счет уменьшения толщины и происходит ее контакт с направляющим роликом 4, обеспечивающим получение правильной кольцевой формы поковки. После касания поковкой контрольного ролика 5 раскатка прекращается.

Раскаткой получают поковки колец с поперечными сечениями различной формы (зависящими от профиля валков), наружным диаметром 70-700 мм и шириной 20-180 мм (рис. 3.32, г).

Горячая накатка зубчатых колес. Сущность процесса заключается в обкатке нагретой штучной или прутковой заготовки в зубчатых валках.

Принципиальная схема одного из способов горячей накатки показана на рис. 3.33. Поверхностный слой цилиндрической заготовки / нагревается током повышенной частоты с помощью индукторов 2. Зубчатый валок получает принудительное вращение и радиальное перемещение под действием силы со стороны гидравлического цилиндра. Благодаря радиальному усилию зубчатый валок 4, постепенно вдавливаясь в заготовку /, формует на ней зубья. Ролик 3, свободно вращаясь на валу, обкатывает зубья по наружной поверхности. После прокатки прутковой заготовки ее разрезают на отдельные шестерни. Процесс осуществляют на полуавтоматических установках, например на полуавтомате горячего накатывания зубьев конических колес диаметром 175-350 мм и модулем до 10 мм.

Изготовление зубчатых колес методом горячего накатывания повышает износостойкость и усталостную прочность зубьев на 30-50 %. Это объясняется, в частности, благоприятной макроструктурой, при которой волокна обтекают контуры зубьев. Расход металла на 18-40 % меньше, чем при получении зубьев на зубонарезных станках, а производительность полуавтомата для накатки выше производительности зубонарезного оборудования.

. 7 ОТДЕЛОЧНЫЕ ОПЕРАЦИИ ГОРЯЧЕЙ ОБЪЕМНОЙ ШТАМПОВКИ

Общий технологический процесс изготовления поковок горячей объемной штамповкой состоит обычно из следующих этапов: отрезки проката на мерные заготовки; нагрева; штамповки; обрезки заусенца и пробивки пленок; правки; термической обработки; очистки поковок от окалины; калибровки; контроля готовых поковок.

Операции, которые производят с поковкой после ее штамповки, называют отделочными. Все поковки, штампуемые в открытых штампах, имеют заусенец в плоскости разъема, а в поковках -с внутренними отверстиями остаются пленки между наметками (исключая поковки, штампуемые на горизонтально-ковочных машинах).

Обрезку заусенца и пробивку пленок выполняют с помощью штампов, устанавливаемых на кривошипных прессах, по принципу действия аналогичных кривошипным штамповочным прессам.

При обрезке заусенца (рис. 3.34, а) поковку 3 укладывают в матрицу 4 так, что она своим заусенцем ложится на режущие кромки матрицы. При нажатии пуансоном 1 на поковку 3 режущие кромки матрицы срезают заусенец по всему периметру поковки, которая после этого проваливается вниз.

При пробивке пленки (рис. 3.34, б) поковку 3 укладывают в матрицу 4 к с помощью пуансона / пробивают; отход проваливается через отверстие матрицы в тару.

Обрезку и пробивку поковок можно выполнять в холодном и горячем состояниях: для мелких поковок из низкоуглеродистой и низколегированной сталей - в холодном состоянии. В остальных случаях обрезают заусенец и пробивают пленку сразу же после штамповки на обрезном прессе.

Правку штампованных поковок выполняют для устранения искривления осей и искажения поперечных сечений, возникающих при затрудненном извлечении поковок из штампа, после обрезки заусенца, а также после термической обработки. Крупные поковки и поковки из высокоуглеродистых и высоколегированных сталей правят в горячем состоянии, либо в чистовом ручье штампа сразу после обрезки заусенца, либо на обрезном прессе (обрезной штамп совмещается с правочным), либо на отдельной машине.

Мелкие поковки можно править в холодном состоянии после термической обработки.

Очистка поковок от окалины облегчает условия работы режущего инструмента при последующей обработке резанием, а также контроль поверхности поковок. Очистку осуществляют в барабанах, дробью, травлением.

В барабанах поковки очищают следующим образом. Поковки загружают в барабан с наклонной осью вращения, в котором находятся стальные звездочки. При вращении барабана поковки трутся и ударяются друг о друга и о звездочки, благодаря чему окалина сбивается. При очистке тяжелых поковок на их поверхности образуются забоины, поэтому таким способом их не очищают.

Дробеструйная очистка заключается в том, что металлическая дробь размером 1-3 мм с большой скоростью ударяет о поверхность поковки и сбивает с нее окалину. Скорость дроби сообщает сжатый воздух в специальных аппаратах. Этим способом очищают мелко-и среднегабаритные поковки.

Травлением в водных растворах кислот, нагретых до 40-60 °С, очищают крупногабаритные поковки сложных конфигураций.

Калибровка поковок повышает точность размеров всей поковки или ее отдельных участков. Таким образом, последующая механическая обработка устраняется полностью или ограничивается только шлифованием. Различают плоскостную и объемную калибровку.

Плоскостная калибровка служит для получения точных вертикальных размеров на одном или нескольких участках поковки, ограниченных горизонтальными плоскостями (рис. 3.35, б).

 

Поскольку калибруют с небольшой степенью деформации (менее 5-10%), необходимо заранее при штамповке предусматривать припуск на калибровку. Причем с увеличением припуска точность размеров после калибровки уменьшается, а качество поверхности улучшается. Обычная точность после калибровки составляет ±(0,1 – 0,25 мм), а допуск при калибровке с повышенной точностью в 2 раза меньше.

Объемной калибровкой (рис. 3.35, в) повышают точность размеров поковки в разных направлениях и улучшают качество ее поверхности. Калибруют в штампах с ручьями, соответствующими конфигурации поковки.

Контроль качества необходим не только для готовых поковок, но и для условий их изготовления на всех этапах, начиная от получения исходных заготовок.

 

ГЛАВА VI. ХОЛОДНАЯ ШТАМПОВКА

. I. ХОЛОДНОЕ ВЫДАВЛИВАНИЕ

Обычно под холодной штамповкой понимают штамповку без предварительного нагрева заготовки. Для металлов и сплавов, применяемых при штамповке, такой процесс деформирования соответствует условиям холодной деформации.

Холодную штамповку можно подразделить на объемную штамповку (сортового металла) и листовую штамповку (листового металла). Основные разновидности холодной объемной штамповки - холодное выдавливание, холодная высадка и холодная объемная формовка.

При холодном выдавливании заготовку помещают в полость, из которой металл выдавливают в отверстия, имеющиеся в рабочем инструменте. Выдавливание обычно выполняют на кривошипных или гидравлических прессах в штампах, рабочими частями которых являются пуансон и матрица. Различают прямое, обратное, боковое и комбинированное выдавливание.

При прямом выдавливании (рис. 3.36, а) металл вытекает в отверстие, расположенное в донной части матрицы 2, в направлении, совпадающем с направлением движения пуансона / относительно матрицы.

Если на торце пуансона (рис. 3.36, б) имеется стержень, перекрывающий отверстие матрицы до начала выдавливания, то металл выдавливается в кольцевую щель между стержнем и отверстием матрицы. В этом случае прямым выдавливанием можно получать детали типа трубки с фланцем, а если исходная заготовка имела форму толстостенной чашечки, то и детали в виде стакана с фланцем.

При обратном выдавливании направление течения металла противоположно направлению движения пуансона относительно матрицы. Наиболее часто встречающейся схемой обратного выдавливания является схема, при которой металл может вытекать в кольцевой зазор между пуансоном и матрицей (рис, 3.36, в).

Реже применяют схему обратного выдавливания, при которой металл выдавливается в отверстие в пуансоне, для получения деталей типа стержня с фланцем (рис. 3.36, г).

При боковом выдавливании металл вытекает в отверстие в боковой части матрицы в направлении, не совпадающем с направлением движения пуансона (рис. 3.36, д). Таким образом, можно получить детали типа тройников, крестовин и т. п. В этом случае, чтобы обеспечить удаление заготовки после штамповки, матрицу выполняют состоящей из двух половинок с плоскостью разъема, совпадающей с плоскостью, в которой расположены осевые линии заготовки и получаемого отростка.

Комбинированное выдавливание характеризуется одновременным течением металла по нескольким направлениям и может быть осуществлено по нескольким из рассмотренных ранее схем холодного выдавливания. На рис. 3.36, е приведена схема комбинированного выдавливания, совмещающая схемы, показанные на рис. 3.36, а, в.

Основной положительной особенностью выдавливания является возможность получения без разрушения заготовки весьма больших степеней деформации, которые можно характеризовать показателем

,

 

где F0 - площадь поперечного сечения исходной заготовки;

F1 - площадь поперечного сечения выдавленной части детали).

 

Для весьма мягких, пластичных металлов k > 100 (алюминиевые тубы со стенкой толщиной 0,1-0,2 мм при диаметре тубы 20- 40 мм).

 

2. ХОЛОДНАЯ ВЫСАДКА

Холодную высадку выполняют на специальных холодно-высадочных автоматах. Штампуют от прутка или проволоки. Пруток подается до упора, поперечным движением ножа отрезается заготовка требуемой длины и последовательно переносится с помощью специального механизма в позиции штамповки, на которых из заготовки получают деталь.

На холодновысадочных автоматах штампуют заготовки диаметром 0,5-40 мм из черных и цветных металлов, а также детали с местными утолщениями сплошные и с отверстиями (заклепки, болты, винты, гвозди, шарики, ролики, гайки, звездочки, накидные гайки и т. п.).

Штамповкой на холодновысадочных автоматах обеспечиваются достаточно высокая точность размеров и хорошее качество поверхности, вследствие чего некоторые детали не требуют последующей обработки резанием. Так, в частности, изготовляют метизные изделия (винты, болты, шпильки), причем и резьбу получают на автоматах обработкой давлением - накаткой.

Штамповка на холодновысадочных автоматах высокопроизводительна: 20-400 деталей в минуту (большая производительность для деталей меньших размеров). Штамповка на холодновысадочных автоматах характеризуется высоким коэффициентом использования металла. Средний коэффициент использования металла <~95 % (только 5 % металла идет в отход).

3. ХОЛОДНАЯ ШТАМПОВКА В ОТКРЫТЫХ ШТАМПАХ

Холодная штамповка в открытых штампах заключается в придании заготовке формы детали путем заполнения полости штампа металлом заготовки. Схема холодной штамповки аналогична схеме горячей объемной штамповки, показанной на рис. 3.22, а. Холодная объемная штамповка требует значительных удельных усилий вследствие высокого сопротивления металла деформированию в условиях холодной деформации и упрочнения металла в процессе деформирования. Упрочнение сопровождается и уменьшением пластичности. Для уменьшения вредного влияния упрочнения и облегчения процесса деформирования при холодной штамповке оформление детали обычно расчленяют на переходы, между которыми заготовку подвергают рекристаллизационному отжигу. Отжиг снижает удельные усилия при штамповке на последующих переходах и повышает пластичность металла, что уменьшает опасность разрушения заготовки в процессе деформирования и увеличивает допустимую степень деформации.

Холодную объемную штамповку обычно осуществляют в открытых штампах, так как при этом удельные усилия меньше, чем при штамповке в закрытых штампах (возможность вытекания металла в заусенец облегчает деформирование). В закрытых штампах в условиях холодной деформации штампуют реже и главным образом детали из цветных металлов.

Рекомендации по конструированию деталей применительно к изготовлению их холодной штамповкой сходны с рекомендациями, приведенными для ранее рассмотренной горячей объемной штамповки. Отметим, что допустимые углы наклона и радиусы скруглений обычно меньше, чем углы наклона и радиусы скруглений при горячей штамповке.

4. ХОЛОДНАЯ ЛИСТОВАЯ ШТАМПОВКА

Сущность способа. В качестве заготовки при листовой штамповке используют полученные прокаткой лист, полосу или ленту, свернутую в рулон. Толщина заготовки при холодной штамповке обычно не более 10 мм и лишь в сравнительно редких случаях - более 20 мм. Детали из заготовок толщиной более 20 мм штампуют с нагревом до ковочных температур (горячая листовая штамповка), что позволяет значительно уменьшить усилие деформирования по сравнению с холодной штамповкой. Холодная листовая штамповка получила более широкое применение, чем горячая.

Листовой штамповкой изготовляют самые разнообразные плоские и пространственные детали.

Для деталей, получаемых листовой штамповкой, характерно то, что толщина их стенок незначительно отличается от толщины исходной заготовки. При изготовлении листовой штамповкой пространственных деталей заготовка обычно испытывает значительные пластические деформации. Это обстоятельство вынуждает предъявлять к материалу заготовки достаточно высокие требования по пластичности.

При листовой штамповке чаще всего используют низкоуглеродистую сталь, пластичные легированные стали, медь, латунь, содержащую более 60 % Сu, алюминий и его сплавы, магниевые сплавы, титан и др.

К преимуществам листовой штамповки относятся: возможность получения деталей минимальной массы при заданной их прочности и жесткости; достаточно высокие точность размеров и качество поверхности, позволяющие до минимума сократить отделочные операции обработки резанием; сравнительная простота механизации и автоматизации процессов штамповки, обеспечивающая высокую производительность (30-40 тыс. деталей в смену с одной машины); хорошая приспособляемость к масштабам производства, при которой листовая штамповка может быть экономически целесообразной и в массовом, и в мелкосерийном производстве.

Как правило, при листовой штамповке пластические деформации получает лишь часть заготовки. Операцией листовой штамповки называется процесс пластической деформации, обеспечивающий характерное изменение формы определенного участка заготовки. Различают формоизменяющие операции, в которых заготовка не должна разрушаться в процессе деформирования, и разделительные операции, в которых этап пластического деформирования обязательно завершается разрушением.

Операции листовой штамповки. Рассмотрим основные разделительные и формоизменяющие операции листовой штамповки.

Отрезка - отделение части заготовки по незамкнутому контуру на специальных машинах - ножницах и в штампах. Основные типы ножниц - ножницы с поступательным движением режущих кромок ножа (рис. 3.38, а) и вращательным движением режущих кромок - дисковые ножницы (рис. 3.38, б). Для уменьшения усилия резания режущие кромки в ножницах с поступательным движением ножа наклонены друг к другу под углом 1-5° (гильотинные ножницы). Лист подают до упора, определяющего ширину отрезаемой полосы В. Длина отрезаемой полосы L не должна превышать длины ножей.

При отрезке на дисковых ножницах длина отрезаемой полосы не ограничивается инструментом, вращение дисковых ножей обеспечивает не только разделение, но и подачу заготовки действием сил трения. Прямолинейность линии отрезки на дисковых ножницах обеспечивается соприкосновением разделяемых частей заготовки с плоскими поверхностями ножа и тем, что режущие кромки ножей заходят одна за другую. Для обеспечения захвата и подачи заготовки диаметр ножей должен быть больше толщины заготовки в 30-70 раз (увеличиваясь с уменьшением коэффициента трения).

Качество поверхности среза зависит от зазора zмежду режущими кромками [z= (0,03 - 0,05) S, где S - толщина листа] и отсутствия притупления режущих кромок. Усилие отрезки пропорционально срезаемой в данный момент площади заготовки.

При вырубке и пробивке характер деформирования заготовки одинаков. Эти операции отличаются только назначением. Вырубкой оформляют наружный контур детали (или заготовки для последующего деформирования), а пробивкой - внутренний контур (изготовление отверстий).

Вырубку и пробивку обычно осуществляют металлическими пуансоном и матрицей. Пуансон вдавливает часть заготовки в отверстие матрицы. В начальной стадии деформирования происходит врезание режущих кромок в заготовку и смещение одной части заготовки относительно другой без видимого разрушения (рис. 3.39, а).

При определенной глубине внедрения режущих кромок в заготовку (возрастающей с увеличением пластичности металла) у режущих кромок зарождаются трещины, быстро проникающие в толщу заготовки. Эти трещины наклонены к оси инструмента под углом 4-6°; если эти трещины встречаются, то поверхность среза получается сравнительно ровной (рис. 3.39, б), состоящей из блестящего пояска, образующегося от внедрения режущих кромок до появления трещин, и наклонной шероховатой поверхности разрушения в зоне прохождения трещин.

Возможность совпадения трещин, идущих от режущих кромок пуансона и матрицы, зависит от правильного выбора зазора между пуансоном и матрицей. Зазор z назначают в зависимости от толщины и механических свойств заготовки, он приближенно составляет (0,05-0,1) S. При малом зазоре трещины не встречаются, и на поверхности среза появляются пояски вторичного среза (рис. 3.39, в), ухудшающие ее качество и способствующие разрушению заготовки при последующем деформировании и работе детали.

При вырубке размеры отверстия матрицы равны размерам изделия, а размеры пуансона на 2z меньше их. При пробивке размеры пуансона равны размерам отверстия, а размеры матрицы на 2z больше их.

Кроме рассмотренных разделительных операций, в технологии листовой штамповки применяют и другие, такие, как надрезка (частичное отделение части заготовки по незамкнутому контуру и обрезка.

Характер деформирования заготовки для этих операций аналогичен рассмотренному.

Гибка - операция, изменяющая кривизну заготовки практически без изменения ее линейных размеров (рис. 3.40, а). В процессе гибки пластическая деформация сосредоточивается на узком участке, контактирующем с пуансоном, в то время как участки, образующие полки детали, деформируются упруго. В зоне пластических деформаций наружные слои растягиваются, а внутренние (обращенные к пуансону) сжимаются. У середины заготовки (по толщине) находятся слои, деформация которых равна нулю. Деформация растяжения наружного слоя и сжатия внутреннего увеличивается с уменьшением радиуса скругления рабочего торца пуансона. Деформация растяжения наружного слоя не беспредельна, и при определенной ее величине может начаться разрушение заготовки с образованием трещин, идущих от наружной поверхности в толщу заготовки. Это обстоятельство ограничивает минимальные радиусы rmin исключающие разрушение заготовки. В зависимости от пластичности материала заготовки r min = (0,1-2) S.

При снятии внешних сил, вызывающих изгиб заготовки, растянутые слои стремятся сжаться, а сжатые слои - удлиниться. Благодаря этому при разгрузке изменяются углы между полками (пружинение при гибке). Угол между полками при разгрузке изменяется в зависимости от механических свойств (отношения предела текучести к модулю упругости), от r/S и угла ее, и увеличивается с увеличением этих параметров.

Углы пружинения уменьшаются при гибке с подчеканкой (когда полки заготовки с определенным усилием сжимаются между соответствующими плоскостями пуансона и матрицы), а также при приложении сжимающих или растягивающих сил, действующих вдоль оси заготовки. В последнем случае можно устранить зону растяжения или сжатия в очаге пластических деформаций. При разгрузке все слои заготовки будут или растягиваться, или сжиматься, что и уменьшит угловые деформации.

Вытяжка без утонения стенки превращает плоскую заготовку в полое пространственное изделие при уменьшении периметра вытягиваемой заготовки.

Схема первого перехода вытяжки приведена на рис. 3.41, а. Исходную вырубленную заготовку укладывают на плоскость матрицы. Пуансон надавливает на центральную часть заготовки и смещает ее в отверстие матрицы. Центральная часть заготовки тянет за собой периферийную часть (фланец) заготовки, и последняя, смещаясь в матрицу, образует стенки вытянутого изделия.

Во фланце в радиальном направлении действуют растягивающие напряжения σр, втягивающие фланец в отверстие матрицы, и сжимающие напряжения σ0, действующие в тангенциальном направлении и уменьшающие диаметральные размеры заготовки. При определенных размерах фланец заготовки может потерять устойчивость под действием сжимающих напряжений σ0, что приведет к образованию складок 6 (рис. 3.41, а). Складки могут появиться, если (D - d) > (18-20) S.

Для предотвращения появления складок применяют прижим 3, с определенной силой, прижимающий фланец заготовки к плоскости матрицы.

Растягивающие напряжения на наружной кромке заготовки равны нулю (σр = 0) и возрастают до максимального значения на входе в матрицу. С увеличением ширины фланца растягивающие напряжения, действующие на входе в матрицу, увеличиваются. Если растягивающие напряжения σр достигнут временного сопротивления материала заготовки, то заготовка у донышка разрушится и вытяжка окажется невозможной.

Отсюда следует, что без разрушения можно вытягивать заготовки с определенной, ограниченной шириной фланца. Формоизменение при вытяжке оценивают коэффициентом вытяжки kв = D/d. В зависимости от механических свойств металла и условий вытяжки максимально допустимые значения коэффициента вытяжки составляют 1,8-2,1.

Кроме ширины фланца, на растягивающее напряжение σр, действующее в опасном сечении заготовки, влияют радиусы скругления кромок матрицы r м и пуансона r п, а также силы трения, возникающие при перемещении заготовки относительно матрицы и прижима.

Для уменьшения концентрации напряжений и соответственно опасности разрушения заготовки кромки пуансона и матрицы скругляют по радиусу, равному 5-10 толщин заготовки. Для уменьшения силы трения вытяжку обычно ведут, смазывая заготовку, причем состав смазочного материала подбирают с учетом характеристик материала заготовки, коэффициента вытяжки и формы вытягиваемых деталей.

Толщина фланцевой части заготовки при вытяжке изменяется: краевая часть (где сжимающие напряжения |σ0| > | σр |) утолщается, а участки вблизи донышка - утоняются. Это обстоятельство приводит к тому, что поверхность заготовки при вытяжке изменяется незначительно, и размеры заготовки можно определять из условия равенства поверхности детали (по средней линии) и площади плоской заготовки. Для осесимметричных деталей заготовка обычно имеет форму круга.

При вытяжке без утонения стенки зазор z= (1,1-1,3) S выбирают из условия, при котором утолщенный край заготовки не должен утоняться сжатием между поверхностями пуансона и матрицы (это способствует повышению стойкости инструмента).

Если при допустимом для первого перехода коэффициенте вытяжки невозможно получить деталь с заданным отношением высоты к диаметру, ее вытягивают за несколько переходов. Схема вытяжки на последующем переходе показана на рис. 3.41, б. На последующем переходе уменьшается диаметр полой заготовки и (по условию равенства поверхностей) увеличивается ее высота.

Вытяжка с утонением стенки увеличивает длину полой заготовки в основном за счет уменьшения толщины стенок исходной заготовки (рис. 3.41, в). При вытяжке с утонением стенки зазор между пуансоном и матрицей должен быть меньше толщины стенки, которая, сжимаясь между поверхностями пуансона и матрицы, утоняется и одновременно удлиняется. Вытяжку с утонением стенки применяют для получения деталей, у которых толщина донышка больше толщины стенок, деталей со стенкой, толщина которой уменьшается к краю (в этом случае пуансон выполняют коническим), а также тонкостенных деталей, получение которых вытяжкой без утонения стенки затруднительно в связи с опасностью складкообразования.

При вытяжке с утонением стенки ее толщина за один переход может быть уменьшена в 1,5-2 раза.

Размеры заготовки для получения деталей вытяжкой с утонением стенки определяют из условия равенства объемов заготовки и детали, принимая при этом, что толщина донышка не изменяется.

Отбортовка - получение бортов (горловин) путем вдавливания центральной части заготовки с предварительно пробитым отверстием в матрицу (рис. 3.42, а). При отбортовке кольцевые элементы в очаге деформации растягиваются, причем больше всего увеличивается диаметр кольцевого элемента, граничащего с отверстием. Допустимое без разрушения (без образования продольных трещин) увеличение диаметра отверстия при отбортовке составляет dб/dо = 1,2-1,8 в зависимости от механических свойств материала заготовки, а также от ее относительной толщины S/dо. Разрушению заготовки способствует наклепанный слой у кромки отверстия, образующийся при пробивке. Большее увеличение диаметра можно получить, если заготовку отжечь перед отбортовкой или изготовить отверстие обработкой резанием (сверление с развертыванием), создающим меньшее упрочнение у края отверстия.

Обжим - операция, при которой уменьшается диаметр краевой части полой заготовки в результате заталкивания ее в сужающуюся полость матрицы (рис. 3.42, б). Обжимаемая заготовка получает форму рабочей полости матрицы.

Допустимое уменьшение диаметра при обжиме ограничивается появлением продольных складок в обжимаемой части заготовки или поперечных кольцевых складок в ее недеформируемой части. Обычно за один переход можно получить d изд = (0,7 – 0,8) D заг. Если диаметр краевой части необходимо уменьшить на большую величину, заготовку обжимают за несколько переходов. Толщина заготовки в очаге пластических деформаций увеличивается, причем больше утолщается краевая часть заготовки.

Формовка - операция, при которой изменяется форма заготовки в результате растяжения отдельных ее участков. Толщина заготовки в этих участках уменьшается. Формовкой получают местные выступы на заготовке, ребра жесткости и т. п. Часто вместо металлического пуансона или матрицы применяют резиновую подушку (рис. 3.42, в). С помощью резинового вкладыша (или жидкости) можно увеличить размеры средней части полой заготовки (рис. 3.42, г). При этом резина или жидкость легко удаляются из штампованной детали, а матрица должна быть разъемной.

Штампы для листовой штамповки. В крупносерийном производстве применяют сравнительно сложные штампы, состоящие из значительного числа деталей и обеспечивающие хорошее качество изделия при высокой стойкости инструмента и достаточно высокую производительность. Существуют штампы для выполнения только одной операции и выполнения нескольких операций листовой штамповки за один ход пресса.

Многооперационные штампы обычно дороже однооперационных, но позволяют повысить производительность труда и уменьшить число используемого для штамповки оборудования.

При необходимости изготовления небольшого количества одинаковых деталей (мелкосерийное производство) сложные и дорогостоящие штампы применять нерационально. В этом случае стремятся уменьшить стоимость штампа путем создания упрощенных конструкций, применения менее дорогих материалов для детален штампов и т. п. В упрощенных штампах обычно не применяют устройств для направления верхней плиты относительно нижней (колонок, втулок, направляющих плит и т. п.), упрощают направление полосы (не делают упоров, направляющих линеек и т. п.) и широко применяют детали из эластичных материалов (резина, полиуретан) в качестве съемников, выталкивателей и т. п. Материалом для пуансонов и матриц иногда служат сплавы цветных металлов. В отдельных случаях рабочий инструмент изготовляют из дерева, облицовывая его листовым металлом. В мелкосерийном производстве наряду с упрощенными конструкциями штампов применяют универсальные и быстро переналаживаемые штампы, в которых, заменяя только пуансон и матрицу, можно изготовлять различные детали.

Оборудование листовой штамповки. При листовой штамповке наиболее применимы кривошипные прессы.

Кроме кривошипных прессов для листовой штамповки применяют гидравлические прессы (штамповка резиной, штамповка крупногабаритных толстостенных деталей).

Упрощенные способы обработки листового металла. В мелкосерийном производстве достаточно широко применяют упрощенные способы обработки давлением листовых заготовок: штамповку эластичными материалами, давильные работы, высокоскоростную штамповку и т. п.

При штамповке эластичными материалами только один рабочий элемент (пуансон или матрицу) изготовляют из металла, роль другого инструмента (матрицы или пуансона) выполняют резина, пластмассы (полиуретан) и жидкость,

На рис. 3.45 приведена схема штамповки резиной. Металлическим инструментом является шаблон, на который укладывают заготовку. Резиновая подушка в ползуне пресса прижимает заготовку к шаблону. Если шаблон имеет острые режущие кромки, то давлением резины вначале отгибают свободные края заготовки, а затем ее обрывают по режущей кромке. Так выполняют вырубку и пробивку. Подобным способом можно осуществлять гибку, неглубокую вытяжку, отбортовку и формовку. Обычно штампуют заготовки толщиной не более 3 мм.

Давильные работы предназначены для получения деталей, имеющих форму тел вращения.

Различают давильные работы без утонения и с утонением стенки. Схема давильных работ без утонения стенки показана на рис. 3.46, а. Предварительно вырубленную заготовку продольным суппортом прижимают к торцу формы-пуансона (обычно деревянной), укрепленной на вращающейся планшайбе токарно-давильного станка. На наружной поверхности заготовки создают давление торцом давильника (рычага). Заготовка проскальзывает под давильником, который вызывает местную деформацию. Постепенное деформирование заготовки по всей поверхности позволяет придать заготовке форму пуансона.

Давильные работы с утонением (рис. 3.46, б) изменяют форму заготовки главным образом за счет уменьшения ее толщины без изменения диаметральных размеров. Давильные работы с утонением используют, в частности, взамен вытяжки с утонением, при этом исходную полую цилиндрическую заготовку надевают на цилиндрический вращающийся пуансон. Давильник, перемещаясь параллельно оси заготовки, утоняет ее.

Высокоскоростная штамповка характеризуется тем, что кратковременное приложение больших усилий разгоняет заготовку до скоростей, достигающих 150 м/с; последующее ее деформирование прои


Дата добавления: 2015-08-27; просмотров: 101 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
Изучить методику расчета основных технологических параметров операций вырубки и вытяжки при листовой штамповке. | 

mybiblioteka.su - 2015-2024 год. (0.07 сек.)