Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

28 страница. Po wyparowaniu czap polarnych zacznie odgrywać rolę dynamika efektu cieplarnianego, związanego z zasobami dwutlenku węgla

17 страница | 18 страница | 19 страница | 20 страница | 21 страница | 22 страница | 23 страница | 24 страница | 25 страница | 26 страница |


Читайте также:
  1. 1 страница
  2. 1 страница
  3. 1 страница
  4. 1 страница
  5. 1 страница
  6. 1 страница
  7. 1 страница

334 • CZAS MARSA

Po wyparowaniu czap polarnych zacznie odgrywać rolę dynamika efektu cieplarnianego, związanego z zasobami dwutlenku węgla, uwięzionymi w marsjańskim regolicie. Zasoby, wystarczające do utworzenia na Marsie atmosfery o ciśnieniu 400 mbar, występują głównie na obszarach położonych na dużej szerokości geograficznej. Dwutlenku węgla nie da się w całości wydobyć z regolitu, gdyż, w wyniku ocieplenia, na powierzchni zachowuje się jak „sucha gąbka", na powrót nasiąkająca wydzielonymi gazami. W tym miejscu napotykamy, niestety, pewną niewiadomą - ile wynosi energia lub wzrost temperatury wymagane do wydzielenia się dwutlenku węgla z marsjańskiego regolitu. Nieznaną wielkość nazywamy temperaturą desorpcji (Td). Szacujemy, że Td wynosi 20 K, lecz później przeanalizujemy zachowanie modelu przy zmienionych wartościach Td. Rysunek 9.2 prezentuje dynamikę współzależności atmosfery i regolitu. Wykres przedstawia wartość ciśnienia atmosferycznego na Marsie, wytworzonego w wyniku wydzielania się gazów z regolitu (na rysunku nazwanego ciśnieniem regolitu) w funkcji temperatury regolitu, T. (T to średnia ważona temperatur regolitu z różnych obszarów planety, uwzględniająca zdolność regolitu do przetrzymywania adsorbowanego gazu w konkretnej, miejscowej temperaturze. Ponieważ zimniejsze gleby zawierają więcej CO2, T zwykle odzwierciedla temperatury marsjańskich obszarów arktycz-nych, wokół bieguna północnego, i antarktycznych, leżących w okolicy bieguna południowego). Wykres na rysunku 9.2 pokazuje również zależność temperatury regolitu jako funkcji ciśnienia dwutlenku węgla w atmosferze. Wykresy powstały przy założeniu, że wydzielenie całych biegunowych zapasów dwutlenku węgla spowodowałoby zwiększenie ciśnienia atmosferycznego o 100 mbar, natomiast uwolnienie całych zapasów z regolitu - wzrost o 394 mbar. W efekcie, wziąwszy pod uwagę wielkość zasobów lotnego dwutlenku węgla, ciśnienie marsjań-skiej atmosfery wzrosłoby z 6 mbar do 500 mbar.

Z rysunku 9.2 wynika, że dla wybranej temperatury desorpcji (Td = 20 K) układ atmosfera/regolit ma tylko jedno trwałe położenie równowagi (odpowiadające punktowi przecięcia

TERRAFORMOWANIE MARSA • 335

EFEKT CIEPLARNIANY SPOWODOWANY WYDZIELANIEM GAZÓW PRZEZ REGOLIT

260 -

rr 240

220 -

200 -

180 -

temperatura regolitu

ciśnienie regolitu

letnie temperatury zwrotnikowe

0,1

10 ciśnienie [mb]

Rys. 9.2. Dynamika współzależności marsjańskiej atmosfery i regolitu w warunkach Td = 20 przy zasobach substancji lotnych, odpowiadających atmosferze o ciśnieniu 500 mbar.

krzywych). Po wyparowaniu czap polarnych globalne marsjań-skie ciśnienie i temperatura będą zmierzać do osiągnięcia tych wartości. W chwili wyczerpania się zasobów dwutlenku węgla na biegunach i w marsjańskim regolicie, czyli zatrzymania procesu wydzielania się gazów z obu źródeł, istnieć będzie atmosfera o ciśnieniu 300 mbar, czyli 300 hPa. Rysunek 9.2. ukazuje też średnie temperatury dobowe na obszarach podzwrotnikowych Marsa (Tmax) podczas lata, gdy atmosfera grubieje. Zwróćmy uwagę na to, że krzywa zbliża się do 273 K, temperatury zamarzania wody, czyli - biorąc pod uwagę terra-formowanie Marsa - punktu topnienia lodu z wody. Przy umiarkowanym zaangażowaniu w sztuczne nasilenie efektu cieplarnianego dojdzie do topnienia lodu i wiecznej zmarzliny. Gdyby się okazało, że założenie dotyczące wartości temperatury desorpcji (Td = 20 K) jest zbyt optymistyczne, położenie

336 • CZAS MARSA

240 -

220 -

200 -

180 H

KRZYWA RÓWNOWAGI POMIĘDZY ATMOSFERĄ A REGOLITEM DLA RÓŻNYCH T^

T, = 20

ciśnienie [mb]

Rys. 9.3. Sztucznie wywołany wzrost temperatury regolitu o 10 K może zrównoważyć skutki, wywoływane innymi wartościami Td. Podane wielkości zakładają występowanie na planecie zasobów substancji lotnych, odpowiadających atmosferze CO,, o ciśnieniu 500 mbar.

równowagowego punktu zbiegania się krzywych (punkt C na rysunku 9.2) może bardzo istotnie zależeć od przyjętej wartości Td. Rysunek 9.3 przedstawia krzywe temperatury potrzebnej do wydzielania się dwutlenku węgla z regolitu przy temperaturach desorpcji Td = 25 K i Td = 30 K. W tych przypadkach ciśnienie w punkcie zbiegania się krzywych ulega radykalnej zmianie - z 300 mbar przy Td = 20 K do 31 mbar przy Td = 25 K i 16 mbar przy Td = 30 K. Podobnie wyjątkowa, silna zależność ostatecznych wyników działań od nieznanej wartości Td może na pierwszy rzut oka dyskwalifikować całe przedsięwzięcie ter-raformowania. Rysunek 9.3 ukazuje dodatkowo krzywą (zaznaczoną linią przerywaną), która opisuje rozwój sytuacji przy wykorzystaniu sztucznych metod wywoływania efektu cieplarnianego, powodujących utrzymywanie się temperatury regolitu

TERRAFORMOWANIE MARSA • 337

KRZYWA CIŚNIENIA RÓWNOWAGI CO2 NA PUSTYM MARSIE

ciśnienie, DT = 20 ciśnienie, DT = 10 ciśnienie, DT = 5 ciśnienie, DT = O

100 -

25 30 35 energia uwalniania gazów z regolitu [T ]

Rys. 9.4. Ciśnienie równowagowe osiągnięte na Marsie przy wysokości zasobów substancji lotnych, odpowiadających atmosferze CO2 o ciśnieniu 500 mbar, nie licząc 50 mbar CO2 uwolnionego z czap polarnych. DT (w tekście AT) oznacza trwały wzrost temperatury, spowodowany sztucznymi metodami wywoływania efektu cieplarnianego.

(Tre) o 10 K wyższej w porównaniu z temperaturą osiągniętą wyłącznie w wyniku emisji do atmosfery naturalnego gazowego dwutlenku węgla. Jak już wspomnieliśmy, taki stan można uzyskać wpompowując do atmosfery freony z fabryk. Okazuje się, że proces ten bardzo istotnie poprawia osiągane wyniki temperatury i ciśnienia, przy założeniu wartości temperatury desorpcji (Td) wynoszącej 25 K lub 30 K. Ponadto widzimy, że we wszystkich trzech przypadkach (Td = 20, 25, 30 K) ciśnienie ostatecznej atmosfery Czerwonej Planety sięga kilkuset milibarów.

Model zawiera jeszcze jedną niewiadomą, którą należy wziąć pod uwagę, choć wiemy na jej temat więcej niż na temat tem-

338 • CZAS MARSA

MAKSYMALNE TEMPERATURY ZWROTNIKOWE NA UBOGIM MARSIE

«c. 2

280-

270-i

? 260 -

250 -

240-

r

25 30 35 energia uwalniania gazów z regolitu [T J

Rys. 9.5. Równowagowe maksymalne temperatury pór roku (średnie dobowe) przy wysokości zasobów substancji lotnych odpowiadających atmosferze CO2 o ciśnieniu 500 mbar, nie licząc 50 mbar z CO2 uwolnionego z czap polarnych.

peratury desorpcji. Chodzi o rzeczywistą wielkość zasobów dwutlenku węgla, występujących na Marsie. Im więcej jest dwutlenku węgla, tym większe jego ilości będziemy mogli wydobyć z regolitu, dzięki czemu zdołamy stworzyć gęstszą atmosferę. Należy szukać odpowiedzi na dwa pytania. Czy Mars jest „bogaty", czy „ubogi" w zasoby dwutlenku węgla? Jakie znaczenie dla rozważanego modelu ma wielkość zasobów dwutlenku węgla na Marsie? Na obecnym etapie jedyne, co możemy zrobić, to wziąć pod uwagę obie możliwości i zobaczyć, jaki mają wpływ na rozwój modelowanej sytuacji.

Spójrzmy na rysunki 9.4, 9.5, 9.6 i 9.7, aby zrozumieć, w jaki sposób obfitość dwutlenku węgla wpływa na terraformowa-nie oraz jak wartość Td zależy od ilości zasobów dwutlenku węgla. Rysunki przedstawiają krzywe osiągniętego ciśnienia i temperatury atmosfery oraz maksymalne temperatury pór roku na podzwrotnikowych obszarach Marsa przy założeniu

TERRAFORMOWANIE MARSA • 339

KRZYWA CIŚNIENIA RÓWNOWAGI CO2 NA BOGATYM MARSIE

ciśnienie, DT = 20 ciśnienie, DT = 10 ciśnienie, DT = 5 ciśnienie, DT = O

energia uwalniania gazów z regolitu [Tri]

Rys. 9.6. Ciśnienie równowagowe osiągnięte na Marsie przy wysokości zasobów substancji lotnych odpowiadających atmosferze CO2 o ciśnieniu 1000 mbar, nie licząc 100 mbar z CO2 uwolnionego z czap polarnych.

Marsa „ubogiego" - w tej wersji całkowite zapasy dwutlenku węgla odpowiadające atmosferze o ciśnieniu 500 mbar (50 mbar dwutlenku węgla w czapach polarnych i 444 mbar w re-golicie) - oraz Marsa „bogatego", mającego całkowite zapasy, które odpowiadają atmosferze o ciśnieniu 1000 mbar dwutlenku węgla (100 mbar dwutlenku węgla w czapach polarnych i 894 mbar w regolicie). Pamiętajmy, że dla innych wartości temperatury desorpcji podwyższenie temperatury regolitu w wyniku stosowania sztucznych metod wywoływania efektu cieplarnianego miało istotne znaczenie dla ostatecznego stanu atmosfery. Zależność ta obowiązuje również teraz, gdy badamy sytuację przy założeniu niestosowania sztucznych metod wywoływania efektu cieplarnianego po początkowym uwolnieniu gazu z czap polarnych oraz ciągłego stosowania sztucznych metod wywoływania efektu cieplarnianego, zapewniających utrzymanie temperatury regolitu wyższej od osiągniętej w wy-

340 • CZAS MARSA

MAKSYMALNE TEMPERATURY ZWROTNIKOWE NA BOGATYM MARSIE

20 25 30 35 energia uwalniania gazów z regolitu [T.]

Rys. 9.7. Równowagowe maksymalne temperatury pór roku (średnie dobowe) przy wysokości zasobów substancji lotnych odpowiadających atmosferze CO2 o ciśnieniu 1000 mbar, nie licząc 100 mbar dwutlenku węgla uwolnionego z czap polarnych.

niku naturalnego wydzielenia dwutlenku węgla o 5, 10 i 20 K. Z rysunku 9.5 wynika na przykład, że przy założeniu temperatury desorpcji w wysokości 40 K, sztuczne utrzymywanie temperatury atmosfery na poziomie 20 K powoduje całkowite podniesienie temperatury o ponad 40 K. Ponadto widzimy, że w przypadku długotrwałego stosowania sztucznych metod wywoływania efektu cieplarnianego, podnoszących średnią temperaturę o 20 K ponad poziom osiągnięty w wyniku naturalnych procesów wydzielania dwutlenku węgla, nawet przy pesymistycznym założeniu temperatury desorpcji (Td = 40 K) realne jest otrzymanie gęstej atmosfery i pożądanych wartości ciśnienia.

Z rozważań tych wypływa ważny wniosek: choć ostateczne warunki panujące na terraformowanym Marsie bardzo istotnie zależą od nieznanej wielkości energii potrzebnej do uwolnienia

TERRAFORMOWANIE MARSA • 341

dwutlenku węgla z regolitu (Td), to jeszcze bardziej zależą one od poziomu sztucznie wywołanego efektu cieplarnianego. Można po prostu powiedzieć, że osiągnięte ostatecznie warunki układu atmosfera/regolit są zależne od ludzkiego działania. Sztuczne utrzymywanie temperatury powyżej powstałej w wyniku naturalnego wydzielania dwutlenku węgla pozwala oswobodzić się z ograniczeń narzucanych przez nawet skrajnie niekorzystne wartości Td.

Jak szybko z regolitu wydobędzie się atmosfera?

Dotychczas analizowaliśmy ostateczne warunki, osiągnięte po wyparowaniu całego dwutlenku węgla z okolic biegunów oraz po uwolnieniu go z regolitu. Czapy polarne będą szybko wydzielać dwutlenek węgla, natomiast proces wydobywania adsorbowanego dwutlenku węgla z regolitu, zwłaszcza z głębszych warstw, potrwa nieco dłużej. Dla sensowności terrafor-mowania kluczowe znaczenie ma więc tempo wydzielania dwutlenku węgla z regolitu. Gdyby uwolnienie potrzebnych ilości gazu miało trwać na przykład 100 milionów lat, nasze rozważania miałyby czysto akademicki charakter.

Tempo wydobywania się gazu z regolitu będzie bezpośrednio zależne od prędkości, z jaką rosnąca temperatura „wnika" w głąb marsjańskiej ziemi. Niezłe oszacowanie dostaniemy zakładając, że regolit w dużym stopniu przypomina suchą, ziemską glebę, być może zawierającą trochę wymieszanego lodu. Prędkość propagacji wzrostu temperatury określają prawa przewodnictwa cieplnego. Równania opisujące przewodnictwo cieplne mówią nam, że czas potrzebny na to, by w wybranym miejscu wewnątrz ośrodka temperatura wzrosła o odpowiednią wartość, jest proporcjonalny do kwadratu odległości. Wykorzystując dane dla suchych gleb na Ziemi, możemy stwierdzić, że w przypadku Marsa prędkość wnikania ciepła wynosić będzie około 16 m2 rocznie. Potrzebna nam jest również szacunkowa wartość ilości gazu zawartego w regolicie. Po schłodzeniu mineralnego zeolitu do marsjańskiej tempera-

342 • CZAS MARSA

tury i wystawieniu na kontakt z dwutlenkiem węgla okazuje się, że zeolit absorbuje tyle dwutlenku węgla, że stanowi on potem 20% wagi stałego zeolitu. Marsjański regolit nie składa się z zeolitu, najprawdopodobniej jednak zawiera sporo nie tak bardzo różniących się od zeolitu minerałów ilastych. Przyjmijmy zatem następujące wartości charakteryzujące marsjański regolit: stopień nasycenia regolitu dwutlenkiem węgla wynosi 5%, a luźny materiał powierzchniowy ma średnią gęstość mniej więcej 2,5 tony na metr sześcienny. Gdyby wartości te odpowiadały rzeczywistym, aby uzyskać atmosferę o ciśnieniu 1000 mbar (czyli l bar lub 1000 hPa, wartość ziemskiego ciśnienia atmosferycznego na poziomie morza), trzeba by doprowadzić do wydzielania gazu z warstw regolitu do głębokości 200 m. Powiedzmy, że sztucznie wywołaliśmy wzrost temperatury na powierzchni o 10 K, pozwalający na emisję większości gazów uwięzionych w regolicie. Ten wzrost temperatury będzie następnie wnikał w głąb gleby z prędkością podaną w tabeli 9. l.

Widzimy, że choć długo trzeba czekać na dotarcie ciepła na duże głębokości, stosunkowo szybko wyższa temperatura zapanuje na umiarkowanych głębokościach. Wprawdzie otrzymanie atmosfery o zakładanym ciśnieniu 1000 mbar w wyniku wydzielania się gazów z warstwy regolitu grubości 100 m może potrwać tysiące lat, jednak tylko kilkadziesiąt lat potrzeba na uzyskanie z regolitu pierwszych 100 mbar.

Gdy już większe obszary Marsa osiągną temperaturę wyższą od temperatury zamarzania wody, przynajmniej podczas cieplejszych pór roku, rozpocznie się proces topnienia wody wmarzniętej w regolit jako wieczna zmarzlina. Woda zacznie płynąć wyschniętymi korytami rzecznymi. Para wodna również stanowi gaz, wywołujący efekt cieplarniany, a na Marsie w zaistniałych warunkach prężność pary wodnej znacznie wzrośnie. Zatem powtórne pojawienie się ciekłej wody na powierzchni Marsa będzie jednym z wielu czynników przyspieszających globalne ocieplenie planety. Występowanie ciekłej wody, przynajmniej podczas cieplejszych pór roku, jest fundamentalnym wymogiem powstania pierwszych naturalnych ekosystemów na powierzchni Czerwonej Planety.

TERRAFORMOWANIE MARSA • 343

Dysponujemy niepełną wiedzą na temat dynamiki procesu emisji gazu z regolitu; ponadto wielkość całkowitych zasobów dwutlenku węgla poznamy dopiero wtedy, gdy pierwsi ludzie na Marsie przeprowadzą szczegółową ocenę sytuacji. Dlatego przedstawione wyniki należy uważać za przybliżone i tymczasowe. Mimo to sprzężenie zwrotne, wynikające z wywołania efektu cieplarnianego przez naturalne procesy wydzielania dwutlenku węgla, znacznie ogranicza zakres działań potrzebnych do terraformowania planety. Ponieważ ilość gazów cieplarnianych koniecznych do ogrzania planety jest z grubsza proporcjonalna do kwadratu zakładanego wzrostu temperatury, spowodowanie na Marsie galopującego efektu cieplarnianego przy sztucznym podwyższeniu temperatury o 10 K wymaga jedynie 4% działań kierowanych przez człowieka w porównaniu z koniecznością podniesienia temperatury o całe 50 K (do

Tab. 9.1. Tempo wydzielania atmosfery z marsjanskiego regolitu.

CZAS GŁĘBOKOŚĆ UZYSKANA ATMOSFERA (W ZIEMSKICH LATACH) WNIKNIĘCIA (W METRACH) (W MILIBARACH)

1 4 20

4 8 40

9 12 60

16 16 80

25 20 100

36 24 120

49 28 140

64 32 160

81 36 180

100 40 200

144 48 240

196 56 280

256 64 320

324 72 360

400 80 400

900 120 600

1600 160 800

2500 200 1000

344 • CZAS MARSA

osiągnięcia przez podzwrotnikowe obszary Marsa temperatury wyższej od temperatury zamarzania wody) sztucznymi, siłowymi metodami. Zajmiemy się teraz kwestią sztucznego wywołania wzrostu temperatury o 10 K.

Metody globalnego ocieplenia Czerwonej Planety

Najbardziej obiecujące wydają się następujące trzy metody wywołania wzrostu temperatury (potrzebnego do zapoczątkowania galopującego efektu cieplarnianego): umieszczenie na orbicie zwierciadeł zmieniających bilans cieplny bieguna południowego (co spowoduje parowanie zasobów dwutlenku węgla); masowa produkcja freonów w zakładach przemysłowych na powierzchni Marsa i ich emisja do atmosfery; oraz, po trzecie, utworzenie na dużych obszarach Marsa ekosystemów bakterii, przyczyniających się do globalnego ocieplenia poprzez wytwarzanie silnych, naturalnych gazów cieplarnianych, m.in. amoniaku i metanu. Rozważymy wszystkie trzy możliwości, przekonamy się jednak, że stosując w tym samym czasie kombinację rozmaitych metod osiągniemy lepsze wyniki, niż gdybyśmy użyli wyłącznie jednej metody.3

Lustra na orbicie

Produkcja luster, przystosowanych do przebywania w przestrzeni kosmicznej i zdolnych wywołać ocieplenie całej powierzchni Czerwonej Planety do ziemskich temperatur, teoretycznie jest możliwa, choć stawia wyzwania technologiczne, wykraczające daleko poza zakres niniejszej książki. Prościej będzie zbudować skromniejszą wersję: lustro zdolne ogrzać wybrany obszar Marsa o parę stopni. Wyniki przedstawione na rysunku 9.1. świadczą o tym, że ogrzanie okolic bieguna południowego o 4 K powinno wywołać parowanie tamtejszych zaso-

3 M. Fogg: Terraforming: Engineering Planetary Environments, Society of Automotive Engineers, Warrendale, Pensylwania 1995.

TERRAFORMOWANIE MARSA • 345

bów zamarzniętego dwutlenku węgla. Biorąc pod uwagę wielkość energii słonecznej, potrzebną do podniesienia temperatury obszaru o określoną liczbę stopni ponad biegunową temperaturę 150 K, wnioskujemy, że znajdujące się w przestrzeni kosmicznej lustro o promieniu 125 km odbijałoby dość światła słonecznego, by ogrzać cały obszar na południe od równoleżnika 70° południowej szerokości areograficznej o 5 K (więcej niż trzeba). Statek z lustrem, wykonanym z aluminiowanego mylaru (podobnego typu, co materiał na żagle słoneczne) o gęstości 4 ton na km2, miałby masę 200 tysięcy ton. Po ziemskich oceanach pływa wiele równie masywnych statków. Jeśli jednak rozmiary konstrukcji przeszkodzą w bezpośrednim starcie z Ziemi, a będą opracowane technologie produkcyjne przystosowane do przestrzeni kosmicznej, należy poważnie wziąć pod uwagę możliwość wybudowania lustra w otwartej przestrzeni, z wykorzystaniem materiałów pochodzących z pla-netoidy bądź marsjańskiego księżyca. Na obróbkę materiałów podczas budowy podobnego zwierciadła potrzeba by około 120 megawatolat energii elektrycznej, ilości bez trudu dostarczanej przez zestaw 5 MW reaktorów jądrowych, stosowanych na załogowych statkach kosmicznych z jądrowym napędem elektrycznym (NEP).

Ciekawe, że w pobliżu Marsa odpowiednio zbudowane lustro wcale nie będzie musiało krążyć po orbicie, gdyż siłę grawitacji planety zrównoważy ciśnienie światła słonecznego. Urządzenie statycznie unosiłoby się nad Czerwoną Planetą, nieprzerwanie skupiając promienie słoneczne na obszarze biegunowym.4 Zakładając podaną gęstość materiału, obliczamy, że lustro powinno znajdować się na wysokości 214 tysięcy km. Pomysł wykorzystania zwierciadła wiszącego statycznie nad powierzchnią Marsa jest zilustrowany na rysunku 9.8, natomiast rysunek 9.9 przedstawia krzywą wielkości lustra potrzebnej do rozgrzania wybranych obszarów biegunowych planety.

4 R. Forward: The Statite: A Non-Orbiting Spacecraft, AAUA 89-2546, AIAA/ ASME, 25th Joint Propulsion Conference, Monterey, Kalifornia, lipiec 1989.

346 • CZAS MARSA

Słońce

Rys. 9.8. Żagle, statycznie unoszące się na wysokości 214 tysięcy km nad powierzchnią Marsa, wykonane z materiału o gęstości 4 ton/km2, utrzymują lustro w miejscu dzięki ciśnieniu padającego światła słonecznego. Rezygnacja z niewielkiej części światła pozwala uniknąć rzucania cienia.

Jeśli temperatura desorpcji (Td) nie przekracza 20 K, to, być może, sam dwutlenek węgla wydzielony z czap polarnych wystarczy, by spowodować emisję dwutlenku węgla z regolitu i zapoczątkować galopujący efekt cieplarniany. Skoro jednak, jak przypuszczamy, Td przekracza 20 K, zadanie stworzenia grubej atmosfery o odpowiednio wysokim ciśnieniu będzie wymagać wprowadzenia do atmosfery Marsa gazów silnie wywołujących efekt cieplarniany, które wymuszą globalne ocieplenie planety.

Produkcja freonów na Marsie

Najprostszy sposób na podniesienie marsjańskiej temperatury to zbudowanie i uruchomienie na Czerwonej Planecie fabryk wytwarzających i wprowadzających do atmosfery najsilniejsze znane człowiekowi gazy cieplarniane - chlorowcowe pochodne węglowodorów, zwane freonami, powszechnie obarczane winą za groźne narastanie efektu cieplarnianego na Ziemi oraz kurczenie się warstwy ozonowej. Jednak stosowanie odpowiednich, starannie wybranych i nie zawierających chloru freonów pozwoli wytworzyć w marsjańskiej atmosferze ozonową warstwę, osłaniającą planetę przed promieniowaniem nadfioletowym. Dobrym kandydatem jest perfluorometan, CF4, który ponadto ma bardzo długi czas życia w górnych warstwach ziemskiej atmosfery (w niezmienionej postaci pozostaje przez ponad 10 tysięcy lat). Tabela 9.2 podaje ilości freonów konieczne do wywołania określonego wzrostu temperatury na Marsie oraz wielkość energii, zużywanej do wytwa-

TERRAFORMOWANIE MARSA • 347

OGRZANIE MARSJANSKIEGO BIEGUNA ZA POMOCĄ ZWIERCIADEŁ

800 -

600 -

promień zwierciadła [km] masa zwierciadła [kilotony]

400 -

200 -

wzrost temperatury na biegunie [K]

Rys. 9.9. Umieszczone na słonecznych żaglowcach lustra o promieniu rzędu 100 km i masie rzędu 200 tysięcy ton mogą podnieść temperaturę na biegunie o 5 K, co spowoduje wydzielanie się gazowego dwutlenku węgla z południowej czapy polarnej. Niewykluczone, że tego rodzaju lustra będą budowane w przestrzeni kosmicznej.

rzania wybranych freonów przez okres 20 lat. W przypadku gazu, którego czas życia w atmosferze wynosi 100 lat, do podtrzymania gęstości powstałej warstwy freonów trzeba będzie dalej zużywać moc sięgającą jednej piątej wartości podanej w tabeli. Podobne zużycie energii wiąże się z prowadzeniem szeroko zakrojonej działalności przemysłowej, wymagającej pracy na powierzchni Marsa paru tysięcy osób wytwarzających codziennnie cały pociąg wzbogaconego materiału. Konieczne byłoby dostarczanie 5000 MW energii elektrycznej, ilości odpowiadaj ącej współczesnemu zużyciu dużego amerykańskiego miasta wielkości Chicago. Program wymagałby funduszy idących w setki miliardów dolarów, biorąc jednak pod uwagę wszystkie czynniki, widzimy, że w połowie XXI wieku podobna operacja powinna być zupełnie realna.

348 • CZAS MARSA Metody biologiczne

Wysiłek wiążący się terraformowaniem Marsa zostanie istotnie ograniczony, jeżeli skorzystamy ze wsparcia biologicznych pomocników. Twórcą biologicznego podejścia do terraformowa-nia jest Carl Sagan, zajmujący się tym problemem od lat sześćdziesiątych, gdy zasugerował, że planeta Wenus mogłaby nieco bardziej nadawać się do zamieszkania, gdyby udało się złagodzić tamtejszy, istnie piekielny efekt cieplarniany poprzez wprowadzenie do atmosfery gatunków glonów „pożerających" dwutlenek węgla.5 Pomysł ten najprawdopodobniej nigdy nie doczeka się realizacji. Późniejsze badania dotyczące terraformowania Marsa, prowadzone przez Carla Sagana i jego współpracownika Jamesa Pollacka, wykazały, że istnieją gatunki bakterii, których metabolizm mógłby spowodować, że azot i woda przekształcałyby się w amoniak.6 Na Marsie azot, w niewielkich ilościach obecny w atmosferze, występuje również w postaci pokładów azotanów wewnątrz regolitu. Jeszcze inne bakterie potrafią wytwarzać metan z wody i dwutlenku węgla. Wprawdzie amoniak i metan nie dorównują freonom, wywołują jednak efekt cieplarniany z wy-

Tab. 9.2. Ogrzewanie Marsa za pomocą freonów.

SZTUCZNIE WYWOŁANY WZROST TEMPERATURY (W KELWINACH) CIŚNIENIE FREONÓW (W MIKROBARACH) WIELKOŚĆ PRODUKCJI FREONÓW (W TONACH NA GODZINĘ) ZUŻYCIE ENERGII ELEKTRYCZNEJ (W MW)


Дата добавления: 2015-10-28; просмотров: 49 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
27 страница| 29 страница

mybiblioteka.su - 2015-2024 год. (0.02 сек.)