Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Многоэлектронные атомы

Глава 1. Ионизирующие излучения и их взаимодействие с веществом | Классификация излучений | Основные определения атомной структуры | Радиоактивность | Виды радиоактивного распада | Генераторные системы | Керма и поглощенная доза | Сечения взаимодействия | Общее описание взаимодействия | Взаимодействие с орбитальными электронами |


Читайте также:
  1. Амфотерными называются такие гидроксиды, которые способны отдавать в реакциях с другими соединениями как атомы (ионы) водорода, так и гидрокси-группы (анионы гидроксила).
  2. Атомы блуждают по кристаллу.
  3. Основаниями называются вещества, в которых атомы металла связаны с гидрокси-группами.
  4. Превращение атомов углерода в атомы кремния
  5. Солями называются вещества, в которых атомы металла связаны с кислотными остатками.

Для атомов с числом электронов более одного теория Бора дает качественное описание поведения орбитальных электронов, находящихся на дискретных уровнях, и переходов электронов между оболочками (орбитами), сопровождающееся испусканием фотонов.

Электроны в многоэлектронном атоме занимают разрешенные оболочки, но количество электронов на конкретной оболочке ограничивается значением 2 n 2, где n – квантовый номер оболочки (орбитальное квантовое число). Энергию связи электрона на К -оболочке для Z > 20 можно определить из следующего уравнения:

(1.1)

где E H – энергия Бора, равная 13,61 эВ; Zeff – эффективный атомный номер; s – константа экранирования, равная 2 для К -оболочки.

Возбуждение атома возникает при переходе электрона с данной оболочки на оболочку с более высоким n, которая является пустой или не полностью заполненной. Ионизация атома происходит, когда электрон вырывается из атома, т.е получает достаточно энергии, чтобы преодолеть энергию связи на оболочке. Процессы возбуждения и ионизации возникают в атоме при различных взаимодействиях, в результате которых электрон получает достаточное количество энергии. К таким взаимодействиям относятся: а) кулоновское взаимодействие с заряженной частицей; б) фотоэффект; в) комптоновское рассеяние; г) внутренняя конверсия; д) захват электрона; е) эффект Оже и др.

Орбитальные электроны с высоких оболочек (с более высоким n) при появлении вакансий на низших оболочках (с меньшим значением n) переходят на последние. Разность между энергиями связи на оболочках или высвечивается в виде характеристического фотона, или передается электрону на высокой оболочке, который покидает атом (электроны Оже). Диаграмма энергетических уровней многоэлектронного атома похожа на одноэлектронную диаграмму за исключением того, что энергия связи электронов на внутренних оболочках существенно больше (рис. 1.3).

 

Рис. 1.3. Диаграмма энергетических уровней многоэлектронного атома (свинец) (адаптировано из [1])

 

Количество характеристических фотонов (называемых также флюоресцентными фотонами), испускаемых на одну орбитальную электронную вакансию, называется флюоресцентным выходом ω, в то время как число электронов Оже, испускаемых на одну орбитальную электронную вакансию, равняется (1- ω). Флюоресцентный выход зависит от атомного номера Z атома и квантового числа оболочки. Для атомов с Z < 10 флюоресцентный выход ω К = 0; для Z ≈ 30 ω К = 0,5 и для более высоких он достигает ω К = 0,96, где индекс К относится к К -оболочке.

 


Дата добавления: 2015-10-24; просмотров: 47 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Модель атома водорода Бора| Ядерные реакции

mybiblioteka.su - 2015-2024 год. (0.006 сек.)