Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Формирование новых понятий и способов действия.

Читайте также:
  1. I.3. Равновесные и неравновесные взаимодействия. Статические и нестатические процессы.
  2. II. Формирование и ведение реестра
  3. II. Формирование поездов
  4. II. — Формирование территории Китая
  5. III монтажный поток- монтаж стеновых панелей.
  6. IV. НАЧАЛЬНЫЙ ЭТАП ВОИНЫ. ФОРМИРОВАНИЕ СИСТЕМЫ "ВО-ЕННОГО КОММУНИЗМА".
  7. V Формирование основ безопасности собственной жизнедеятельности

Организационнй этап.

Актуализация.

Формирование новых понятий и способов действия.

Лекция.

Химические реакции, или химические явления, —
это процессы, в результате которых из одних веществ образуются другие, отличающиеся от них по составу и (или) строению.
При химических реакциях обязательно происходит изменение веществ, при котором рвутся старые и образуются новые связи между атомами.
Классификация химических реакций многопланова, то есть в ее основу могут быть положены различные признаки. Но под любой из таких признаков могут быть отнесены реакции как между неорганическими, так и между органическими веществами.
Рассмотрим классификацию химических реакций по различным признакам.

I. По числу и составу реагирующих веществ
Реакции, идущие без изменения состава веществ
В неорганической химии к таким реакциям можно отнести процессы.получения аллотропных модификаций одного химического элемента, например:
С (графит) <-> С (алмаз) S (ромбическая) <-> S (моноклинная) Р (белый) <-> Р (красный)В органической химии к этому типу реакций могут быть отнесены реакции изомеризации, которые идут без изменения не только качественного, но и количественного состава молекул веществВпервые мочевина была синтезирована Ф. Велером в 1828 г. изомеризацией цианата аммония при нагревании.
Реакции, идущие с изменением состава вещества
Можно выделить четыре типа таких реакций: соединения, разложения, замещения и обмена.
1. Реакции соединения — это такие реакции, при которых из двух и более веществ образуется одно сложное вещество.
В неорганической химии все многообразие реакций соединения можно рассмотреть, например, на примере реакций получения серной кислоты из серы.
В органической химии реакции соединения принято называть «реакциями присоединения». Все многообразие таких реакций можно рассмотреть на примере блока реакций, характеризующих свойства непредельных веществ.
2. Реакции разложения — это такие реакции, при которых из одного сложного вещества образуется несколько новых веществ.
В неорганической химии все многообразие таких реакций можно рассмотреть на блоке реакций получения кислорода лабораторными способами.
В органической химии реакции разложения можно рассмотреть на блоке реакций получения этилена в лаборатории и в промышленности:
3. Реакции замещения — это такие реакции, в результате которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе.
В неорганической химии примером таких процессов может служить блок реакций, характеризующих свойства, например, металлов:
Предметом изучения органической химии являются не простые вещества, а только соединения. Поэтому как пример реакции замещения приведем наиболее характерное свойство предельных соединений, в частности метана, — способность его атомов водорода замещаться на атомы галогена. Обратим внимание на особенность реакции замещения у органических веществ: в результате таких реакций образуются не простое и сложное вещество, как в неорганической химии, а два сложных вещества.
В органической химии к реакциям замещения относят и некоторые реакции между двумя сложными веществами, например нитрование бензола. Она формально является реакцией обмена. То, что это реакция замещения, становится понятным только при рассмотрении ее механизма.
4. Реакции обмена — это такие реакции, при которых два сложных вещества обмениваются своими составными частями.
В неорганической химии это может быть блок реакций, характеризующих, например, свойства щелочей.
В органической химии можно рассмотреть блок реакций, характеризующих, например, свойства уксусной кислоты.
II. По изменению степеней окисления химических элементов, образующих вещества
1. Реакции, идущие с изменением степеней окисления элементов, или окислительно-восстановительные реакции.
К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество.В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов.2Реакции идущие без изменения ст. окисления химических элементов. К ним, например, относятся все реакции ионного обмена, а также многие реакции соединения, многие реакции разложения, реакции этерификации.III. По тепловому эффекту:
1. Экзотермические реакции протекают с выделением энергии.
К ним относятся почти все реакции соединения.
Экзотермические реакции, которые протекают с выделением света, относят к реакциям горения. Гидрирование этилена — пример экзотермической реакции. Она идет при комнатной температуре.
2. Эндотермические реакции протекают с поглощением энергии.
Очевидно, что к ним будут относиться почти все реакции разложения.IV. По агрегатному состоянию реагирующих веществ (фазовому составу)
1. Гетерогенные реакции — реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях (в разных фазах).
2. Гомогенные реакции — реакции, в которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии (в одной фазе).
V. По участию катализатора различают:
1. Некаталитические реакции, идущие без участия катализатора.
2. Каталитические реакции, идущие с участием катализатора.Так как все биохимические реакции, протекающие в клетках живых организмов, идут с участием особых биологических катализаторов белковой природы — ферментов, все они относятся к каталитическим или, точнее, ферментативным.
Следует отметить, что более 70% химических производств используют катализаторы.
VI. По направлению различают:
1. Необратимые реакции протекают в данных условиях только в одном направлении.
К ним можно отнести все реакции обмена, сопровождающиеся образованием осадка, газа или малодиссоциирующего вещества (воды) и все реакции горения.
2. Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях.
Обратимы все реакции этерификации (противоположный процесс, как вы знаете, носит название гидролиза) и гидролиза белков, сложных эфиров, углеводов, полинуклеотидов. Обратимость этих процессов лежит в основе важнейшего свойства живого организма — обмена веществ.
VII. По механизму протекания различают:
1. Радикальные реакции идут между образующимися в ходе реакции радикалами и молекулами.
Как вы уже знаете, при всех реакциях происходит разрыв старых и образование новых химических связей. Способ разрыва связи в молекулах исходного вещества определяет механизм (путь) реакции. Если вещество образовано за счет ковалентной связи, то могут быть два способа разрыва этой связи: гемолитический и гетероли-тический. Например, для молекул Сl2, СН4 и т. д. реализуется гемолитический разрыв связей, он приведет к образованию частиц с неспаренными электронами, то есть свободных радикалов.По радикальному механизму протекают большинство реакций горения органических и неорганических веществ, синтез воды, аммиака, полимеризация этилена, винилхлорида и др.2. Ионные реакции идут между уже имеющимися или образующимися в ходе реакции ионами.
По другому ионному механизму происходят реакции присоединения к алкенам галогеноводородов, водорода, галогенов, окисление и дегидратация спиртов, замещение спиртового гидроксила на галоген; реакции, характеризующие свойства альдегидов и кислот. Ионы в этом случае образуются при гетеролитическом разрыве ковалентных полярных связей.
VIII. По виду энергии, инициирующей реакцию, различают: 1. Фотохимические реакции. Их инициирует световая энергия. Кроме рассмотренных выше фотохимических процессов синтеза НСl или реакции метана с хлором, к ним можно отнести получение озона в тропосфере как вторичного загрязнителя атмосферы. В роли первичного в этом случае выступает оксид азота(IV), который под действием света образует радикалы кислорода. Эти радикалы взаимодействуют с молекулами кислорода, в результате чего получается озон.
Образование озона идет все время, пока достаточно света, так как N0 может взаимодействовать с молекулами кислорода с образованием того же Ж)2. Накопление озона и других вторичных загрязнителей атмосферы может привести к появлению фотохимического смога.
К этому виду реакций принадлежит и важнейший процесс, протекающий в растительных клетках, — фотосинтез, название которого говорит само за себя.
2. Радиационные реакции. Они инициируются излучениями большой энергии — рентгеновскими лучами, ядерными излучениями. Вулканизация каучука может быть проведена без серы с использованием радиовулканизации, и полученная резина будет ничуть не хуже традиционной.
3. Электрохимические реакции. Их инициирует электрический ток. Помимо хорошо известных вам реакций электролиза укажем также реакции электросинтеза, например, реакции промышленного получения неорганических окислителей.
4. Термохимические реакции. Их инициирует тепловая энергия. К ним относятся все эндотермические реакции и множество экзотермических реакций, для начала которых необходима первоначальная подача теплоты, то есть инициирование процесса.
Классификация химических реакций, как и все другие классификации, условна. Ученые договорились разделить реакции на определенные типы по выделенным ими признакам. Но большинство химических превращений можно отнести к разным типам. Например, составим характеристику процесса синтеза аммиака.
Это реакция соединения, окислительно-восстановительная, экзотермическая, обратимая, каталитическая, гетерогенная (точнее, гетерогенно-каталитическая), протекающая с уменьшением давления в системе. Для успешного управления процессом необходимо учитывать все приведенные сведения. Поступательное развитие науки XIX в., приведшее к раскрытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке, над вопросами о характере химических процессов в живых тканях, об обусловленности биологических функций химическими реакциями.Если посмотреть на обмен веществ в организме с чисто химической точки зрения, как это сделал А.И. Опарин, мы увидим совокупность большого числа сравнительно простых и однообразных химических реакций, которые сочетаются между добей во времени, протекают не случайно, а в строгой последовательности, в результате чего образуются длинные цепи реакций. И этот порядок закономерно направлен, к постоянному самосохранению и самовоспроизведению всей живой системы в целом в данных условиях окружающей среды.
Словом, такие специфические свойства живого, как рост, размножение, подвижность, возбудимость, способность реагировать на изменения внешней среды, связаны с определенными комплексами химических превращений. Значение химии среди наук, изучающих жизнь, исключительно велико. Именно химией выявлена важнейшая роль хлорофилла как химической основы фотосинтеза, гемоглобина как основы процесса дыхания, установлена химическая природа передачи нервного возбуждения, определена структура нуклеиновых Кислот и т.д. Но главное заключается в том, что объективно в самой основе биологических процессов, функций живого лежат химические механизмы. Все функции и процессы, происходящие в живом организме, оказывается возможным изложить на языке химии, в виде конкретных химических процессов. Разумеется, было бы неверным сводить явления жизни к химическим процессам. Это было бы грубым механистическим упрощением. И ярким свидетельством этого выступает специфика химических процессов в живых системах по сравнению с неживыми. Изучение этой специфики раскрывает единство и взаимосвязь химической и биологической форм движения материи. Об этом же говорят и другие науки, возникшие на стыке биологии, химии и физики: биохимия — наука об обмене веществ и химических процессов в живых организмах; биоорганическая химия — наука о строении, функциях и путях синтеза соединений, составляющих живые организмы; физико-химическая биология как наука о функционировании сложных систем передачи информации и регулировании биологических процессов на молекулярном уровне, а также биофизика, биофизическая химия и радиационная биология.Крупнейшими достижениями этого процесса стали определение химических продуктов клеточного метаболизма (обмена веществ в растениях, животных, микроорганизмах), установление биологических путей и циклов биосинтеза этих продуктов; был реализован их искусственный синтез, сделано открытие материальных основ регулятивного и наследственного молекулярного механизма, а также в значительной степени выяснено значение химических процессов энергетике процессов клетки и вообще живых организмов.
Ныне для химии особенно важным становится применение биологических принципов, в которых сконцентрирован опыт приспособления живых организмов к условиям Земли в течение многих миллионов лет, опыт создания наиболее совершенных механизмов и процессов. На этом пути есть уже определенные достижения.Более столетия назад ученые поняли, что основой исключительной эффективности биологических процессов является биокатализ. Поэтому химики ставят своей целью создать новую химию, основанную на каталитическом опыте живой природы. В ней появится новое управление химическими процессами, где начнут применяться принципы, синтеза себе подобных молекул, по принципу ферментов будут созданы катализаторы с таким разнообразием качеств, которые далеко превзойдут существующие в нашей промышленности.
Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире сталкиваются с серьезными ограничениями. Пока речь может идти только о моделировании некоторых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем, а также частично-практического применения выделенных ферментов для ускорения некоторых химических реакций.Здесь самым перспективным направлением, очевидно, являются исследования, ориентированные на применение принципов биокатализа в химии и химической технологии, для чего нужно изучить весь каталитический опыт живой природы, в том числе и опыт формирования самого фермента, клетки и даже организма.
Теория саморазвития элементарных открытых каталитических систем, в самом общем виде выдвинутая профессором МГУ А.П. Руденко в 1964 г., является общей теорией химической эволюции и биогенеза. Она решает вопросы о движущих силах и механизмах эволюционного процесса, то есть о законах химической эволюции, об отборе элементов и структур и их причинной обусловленности, о высоте химической организации и иерархии химических систем как следствии эволюции.Теоретическим ядром этой теории является положение о том, что химическая эволюция представляет собой саморазвитие каталитических систем и, следовательно, эволюционирующим веществом являются катализаторы. В ходе реакции происходит естественный отбор тех каталитических центров, которые обладают наибольшей активностью. Саморазвитие, самоорганизация и самоусложнение каталитических систем происходит за счет постоянного притока трансформируемой энергии. А так как основным источником энергии является базисная реакция, то максимальные эволюционные преимущества получают каталитические системы, развивающиеся на базе экзотермических реакций. Отсюда базисная реакция является не только источником энергии, но и орудием отбора наиболее прогрессивных эволюционных изменений катализаторов.
Развивая эти взгляды, А.П. Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью образуются те пути эволюционных изменений катализатора, на которых происходит максимальное увеличение его абсолютной активности.
Практическим следствием теории саморазвития открытых каталитических систем является так называемая нестационарная технология, то есть технология с меняющимися условиями реакции. Сегодня исследователи приходят к выводу, что стационарный режим, надежная стабилизация которого казалась залогом высокой эффективности промышленнoro процесса, является лишь частным случаем нестационарного режима. При этом обнаружено множество нестационарных режимов, способствующих интенсификации реакции.
В настоящее время уже видны перспективы возникновения и развития новой химии, на основе которой будут созданы малоотходные, безотходные и энергосберегающие промышленные технологии.Сегодня химики пришли к выводу, что, используя те же принципы, на которых построена химия организмов, в будущем (не повторяя в точности природу) можно будет построить принципиально новую химию, новое управление химическими, процессами, где начнут применяться принципы синтеза себе подобных молекул. Предвидится создание преобразователей, использующих с большим КПД солнечный свет, превращая его в химическую и электрическую энергию, а также химическую энергию в свет большой интенсивности.
Для освоения каталитического опыта живой природы и реализации полученных знаний в промышленном производстве химики наметили рад перспективных путей.
Первый — развитие исследований в области металлокомплексного катализа с ориентацией на соответствующие объекты живой природы. Этот катализ обогащается приемами, которыми пользуются живые организмы в ферментативных реакциях, а также способами классического гетерогенного катализа.

2-ой путь заключается в моделировании биокатализаторов. В настоящее время за счет искусственного отбора структур удалось построить модели многих ферментов характеризующихся высокой активностью и селективностью, иногда' почти такой же, как и у оригиналов, или с большей простотой строения.

Правда, пока все же полученные модели не в состоянии заменить природные биокатализаторы живых систем. На данном этапе развития химических знании проблема эта решается чрезвычайно сложно. Фермент выделяется из живой системы, определяется его структура, он вводится в реакцию для осуществления каталитических функций. Но работает непродолжительное время и быстро разрушается, поскольку является выделенным из целого, из клетки. Цельная клетка со всем ее ферментным аппаратом — более важный объект, чем одна, выделенная из нее деталь.
3-ий путь к освоению механизмов лаборатории живей природы связывается с достижениями химии иммобилизованных систем. Сущность иммобилизации состоит в закреплении выделенных из живого организма ферментов на твердой поверхности путем адсорбции, которая и превращает их в гетерогенный катализатор и обеспечивает его стабильность и непрерывное действие.
Четвертый путь в развитии исследований, ориентированных на применение принципов биокатализа в химии и химической технологии, характеризуется постановкой самой широкой задачи — изучением и освоением всего каталитического опыта живой природы, в том числе и формирования фермента, клетки и даже организма. Это ступень, на которой основы эволюционной химии как действенной науки с ее рабочими функциями. Ученые утверждают, что это движение химической науки к принципиально новой химической технологии с перспективой создания аналогов живых систем.


Дата добавления: 2015-09-05; просмотров: 63 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
И многие другие по запросу.| Введение

mybiblioteka.su - 2015-2024 год. (0.008 сек.)