Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Особенности дыхания в разных условиях

Читайте также:
  1. A.6.6 Основные команды разных версий DOS.
  2. Актуальность проблем межкультурной коммуникации в современных условиях
  3. Анкетирование. Сущность метода, особенности проведения, недостатки.
  4. Анкетирование. Сущность метода, особенности проведения, недостатки.
  5. В темное время суток и в условиях недостаточной видимости стоянка вне населенных пунктов разрешается только на площадках для стоянки или за пределами дороги.
  6. В условиях коллективных форм организации и оплаты труда могут применяться также укрупненные и комплексные нормы.
  7. В3.5. Особенности тактильной рецепции

Лекция 4.

_______________________________________________

План лекции

1. Первый вдох новорожденного.

2. Особенности дыхания в разных условиях.

3. Дыхание чистым кислородом.

 

После перевязки пуповины и развития гипоксии происходит торможение внутриутробных дыхательных движений, а затем через 1-1,5 минуты возникают первые дыхательные движения.

Во время первого вдоха грудная клетка расправляется, ребра поднимаются, происходит фиксация их головок в межпозвоночных ямках и в первоначальное положение они не возвращаются.

Во время первых дыхательных движений в грудной полости образуется отрицательное давление порядка 200-250 мм H2О в отдельных случаях транспульмональное давление (т.е. перепад давления между дыхательными путями и плевральной полостью) достигает (70 см Н2О), что в 10-15 раз выше, чем при последующем спокойном дыхании.

Такое значительное повышенное отрицательное давление обеспе-чивает преодоление упругости легочной ткани и расправление легких. За активным вдохом следует активный выдох. Такое значительное повышение отрицательного давления обеспечивает преодоление упругости легочной ткани и расправление легких.

За активным вдохом следует активный выдох, при котором в плевральной полости создается положительное давление до 12,0 см Н2О (первый крик).

При последующих дыхательных движениях растяжимость легких увеличивается, упругость их снижается и работа на выполнение дыхательных движений снижается.

После трех дыхательных движений легочная ткань становится равномерно прозрачной, а следовательно расправленной. Поэтому первый вдох является самым тяжелым, самым трудным.

Факторы, обусловливающие первый вдох:

1. Пережатие пуповины - аноксия. Снижение в крови О2 повышает возбудимость ДЦ и его чувствительность к СО2. Но, видимо, не только аноксия в этом процессе имеет значение, так как есть данные, что дыхание может начаться сразу же после пережатия пуповины, когда рО2 в крови пупочной вены, приблизительно, равно 100 мм Hg.

2. Накопление СО2 - раздражитель, способный привести ДЦ в действие.

3. Метаболический ацидоз, развивающийся после отделения пла-центы, когда удаление кислых продуктов прекращения, а щелочные резервы снижаются (понижается рН).

4. Наряду с этим стимулами для возникновения дыхания являются разнообразные термические, механические раздражители, действующие на новорожденного, попадающего во ремя рождения в совершенно иные условия внешней среды. Возрастает импульсация с проприо- и вестибуло рецепторов возникающая во время и сразу после рождения, оказывающая стимулирующее влияние на ДЦ.

5. Кроме того, имеется мнение о том, что после прохождения плода через родовые пути сдавленная грудная клетка благодаря своей эластичности, резко расширяется, в грудной полости создается значительное отрицательное давление, способствующее вхождению воздуха в дыхательные пути. При этом первый вдох считается как "взрывной": При его осуществлении объем вдыхаемого воздуха равен 2-3-х кратному объему его у детей первых дней жизни.

6. Прекращается торможение ДЦ раздражением жидкостью рецепторов, расположенных в области ноздрей (“рефлекс ныряльщика”).

Спорным считается вопрос на какие структуры и как действуют изменения химического состава крови и вся масса афферентных воз-действий.

1. Возбуждение спинальных дыхательных нейронов

2. Клеток ретикулярной формаци (Rf) ствола мозга. Поток им-пульсов повышает активность Rf, которая облегчает реакции ствола мозга. Одним из стимуляторов Rf является температура окружающей среды. Но имеется мнение о том, что поступление первых порций воздуха в легкие новорожденного облегчается вследствие повышения тургора альвеол, в результате притока к ним крови, что способствует их расправлению.

Следовательно, механизм первого вдоха новорожденного является сложным, нейрогуморальным, в котором участвует целый комплекс факторов.

Особенности дыхания в разных условиях

1. Дыхание при мышечной работе. Человек в состоянии покоя потребляет 250-300 мл в 1 минуту, при быстрой ходьбе - до 2,5 л, при тя-желой физической работе - до 4 л в 1 минуту. Одновременно повышается образование СО2 и кислых продуктов.

Вентиляция легких повышается пропорционально затратам энергии (может достигать 120-150 л в минуту).

Начало работы сопровождается повышением рСО2 и понижением рН крови. Вентиляция легких повышается, когда газовый состав крови еще не успел измениться. Значит, в начале работы гиперпноэ вызывается нервными факторами. КГМ, вызывая произвольные движения, активирует ДЦ непосредственно и через гипоталамус. Кроме того, существенную роль в данном процессе играют импульсы от проприорецепторов (механорецепторов) сокращающихся мышц.

Затем в процессе работы происходит медленное увеличение вентиляции легких до установления устойчивого состояния.

Образующаяся в начале работы молочная кислота не может полностью окислиться до Н2 О и СО2. Она накапливается в мышцах и поступает в кровь. Это есть кислородная задолженность. Дыхание усиливается и наступает состояние, при котором дыхание и кровообращение достигают определенного уровня, при котором прекращается одышка (мертвая точка у спортсмена). Затем усиленная вентиляция легких приводит к удалению избытка СО2 и повышению рН - устанавливается равновесие между приходом и расходом О2 (второе дыхание у спортсменов).

В этой фазе включаются хеморецепторы. Возрастание образования СО2 при повышении вентиляции легких обеспечивает содержание СО2 в крови без изменений.

Раздражение хеморецепторов усиливается действием молочной кислоты, снижающей рН крови. Значение имеет и повышение температуры тела. Она через гипоталамус увеличивает частоту дыхания.

После окончания работы вентиляция легких снижается, но не до исходного уровня, а остается несколько повышенной в течение нескольких минут под влиянием молочной кислоты и других не-доокисленных продуктов.

Происходит постепенное погашение кислородного долга, т. е. разности между общим количеством О2, требуемым для покрытия энергозатрат (кислородного запроса) и того его количества, кото-рое фактически было потреблено за время работы.

Некоторые виды работ (очень тяжелых, как например, спринтерский бег) требуют такой доставки О2, которую не может выполнить газотранспортная система. Поэтому она может про-должаться очень короткое время (несколько сек). Она совер-шается за счет анаэробных источников энергии и О2, запасенного в миоглобине.

Продолжительная работа обеспечивается энергией и О2 в аэробных условиях (аэробная производительность). Это примерно 2-3 л/минуту.

Вместе с повышением вентиляции легких при физической работе:

· повышается ЧСС (с 70 до 150-200 в 1 минуту);

· увеличивается систолический объем (70 мл до 200 мл);

· увеличивается МОК (с 4-5 л до 20-30 л);

· увеличивается кровоток в работающих мышцах;

увеличивается кислородная емкость крови (в результате поступления из кровяного депо в циркуляцию крови с большим содеранием эритроцитов). Кроме того, потеря Н2О при работе в результате потения приводит к сгущению крови и повышению концентрации эритроцитов и Hb.

· увеличивается диссоциация ННbО2 (снижение рН, повышение рСО2 , температуры).

· увеличивается КИО2 (КУО2) с 30-40 % до 50-60 %.

2. Дыхание при пониженном атмосферном давлении (альпи-нисты, разгерметизирование кабины пилота, парашютисты, исскуственная барокамера). Следствием является гипоксия в результате понижения рО2.

Виды гипоксии:

1. Дыхательная - пониженное содержание О2 во вдыхаемом воздухе (поражение легочной ткани при пневмонии, расстройство регуляции дыха-ния).

2. Циркуляторная (недостаточное притекание крови к ткани или орга-ну).

3. Анемическая (недостаток крови в органах, повышенное образование МtНb, карбоксигемоглобина).

4. Гистотоксическая (невозможность тканями использовать О2 , например, при отравлении синильной кислотой).

При подъеме на высоту начиная с 2 км происходит повышение вентиляции легких (стимуляция хеморецепторов каротидных и аортальных).

Повышение АД, повышение ЧСС - направлено на усиление снабжения тканей О2.

Но повышение вентиляции легких имеет и отрицательное значение - оно ведет к снижению рСО2 (гипокапнии). А это ограничивает повышение вентиляции легких.

На высоте 4-5 км развивается т. н. горная (высотная) болезнь.

К симптомам горной (высотной болезни) относят сонливость, снижение аппетита, апатия, эйфория, одышка, тахикардия, головокружение, рвота, головная боль. Особенно опасна медленно развивающаяся гипоксия, т. к. может быть потеря сознания до появления симптомов, служащих сигналами опасности.

На высоте 7 км. - может наступить потеря сознания и опасные для жизни нарушения дыхания и кровообращения. Причем, в ре-зультате гипоксии отсутствуют неприятные ощущения, нет чув-ства тревоги и опасности и потеря сознания может наступить внезапно.

Время от прекращения подачи О2 до потери сознания (полезное время пребывания в сознании) на высотах > 7000 (например, разгерметизация кабины):

 

Км              
Мин     1.5   2/3 1/2 1/6

 

Применение кислородных аппаратов позволяет сохранить ра-ботоспособность на высотах 11-12 км.

На больших высотах возможна жизнь при условии использования кислородных аппаратов, но в герметизированных кабинах или скафандрах, в которых поддерживается высокое атмосферное давление.

Нескольким хорошо тренированным альпинистам удалось подняться на высоту 8500 м при покорении Эвереста, а затем уже с кислородными приборами они достигли ее вершины (8882 м).

Длительное пребывание в условиях низкого атмосферного давления сопровождается акклиматизация. При этом:

· увеличивается количество эритроцитов в крови (усиливается эритропоэз);

· повышается содержание Hb, что приводит к увеличению кис-лородной емкости крови;

· повышается вентиляция легких;

· увеличивается диссоциации ННbО2 (за счет увеличения в эри-троцитах 2,3 - глицерофосфата).

· увеличивается длина и извилистость капилляров;

· повышается устойчивость клеток (особенно нервных) к гипок-сии.

Пример: В Андах (Южная Америка) живут люди в селениях на высоте 5 км. Работают на рудниках на высоте 5-5,3 км.

В условиях гипоксии появляется прерывистый тип дыхания, харктеризующийся тем, что вначале глубина его нарастает, затем снижается, после чего следует пауза. Такой тип дыхания называется дыханием типа Чейн - Стокса. Оно отмечается при высотной болезни, иногда во сне и у недоношенных детей.

Причина: снижение возбудимости ДЦ в результате гипоксии и гипокапния. Деятельность ДЦ в этих условиях определяется рО2 в артериальной крови. При усиленной вентиляции повышается рО2 в крови (степень гипоксемии снижается) происходит снижение рСО2 (увеличивается его выведение при гипервентиляции) и ды-хание временно прекращается. А когда степень гипоксемии увели-чивается и повышается рСО2 в крови оно опять появляется, нарастает, затем опять уменьшается и прекращается (апноэ).

Вдыхание О2 с добавлением 5 % СО2 дыхание нормализует.

Человек способен задержать дыхание не более на 1-2 мин. После предварительной гипервентиляции тренированный чело-век способен доводить апноэ до 3-4 мин. А этим лимитируется возможное время его пребывания под водой. Но опасность в том, что быстрое снижение оксигенации крови может привести к потере сознания, а в таком состоянии под влиянием повышения рСО2 в крови, произойдет вдох и ныряльщик захлебнется.

Предварительная гипервентиляция опасна по 2 причинам:

1. Головокружение или судороги могут развиться еще до ныряния из-за алкалоза.

2. В конце ныряния может произойти неправильная оценка кислородного резерва, т. к. общая дыхательная активность снижается в связи со снижением рСО2 и алкалозом.

Все многообразие эффектов гипоксии можно разделить на 4 зоны, ограниченные друг от друга эффективными порогами:

1. Нейтральная зона (до 2000 м) - физиологические функции практически не страдают.

2. Зона полной компенсации (2000-4000 м). Даже в покое повышается ЧСС, систолический объем повышается, увеличива-ются МОК и МОД. Физическая и умственная работоспособность несколько снижается.

3. Зона неполной компенсации или зона опасности (4000-7000 м). Достигается порог безопасности (4000). Появляются мышеч-ные подергивания, снижается АД, сознание затуманивается. Снижается работоспособность, нарушается способность к приня-тию решений и реакциям.

4. Критическая зона (> 7000 м). рО2 в альвеолярном воздухе становится ниже критического порога (30-35 мм Hg). Потеря сознания, судороги. Если это недолго - то обратимо. Если долго - нарушения в ЦНС и смерть.

7-8 км - опасно для большинства людей.

8,5-9 км - предел, выше которого без вдыхания О2 человек не может подняться.

9-12 км - с применением кислородного аппарата.

> 12 км - скафандры, в которых поддерживается высокое дав-ление.

3. Дыхание при повышенном атмосферном давлении (работы под водой (водолазы) акванавты). При погружении в воду на каждые 10 м - давление на поверхность тела человека увели-чивается на 1 атм. На глубине 100 м человек должен вдыхать газовую смесь под давлением превышающим атмосферное в 10 раз, так как дыхание возможно при условии, что дыхательная смесь должна подаваться человеку под давлением, равным гидростатическому на данной глубине. Но при этом увеличивается плотность такой смеси, что повышает сопротивление дыханию.

Поэтому во вдыхаемой газовой смеси азот заменяется гелием. Это связано стем, что:

а) плотность гелия в 7 меньше, чем азота;

б) азот под давлением растворяется в крови в количестве, соз-дающим наркотический эффект.

Кислород в газовую смесь добавляют в таком количестве, что-бы его рО2 на глубине было близким к тому, какое имеется в обычных условиях.

При пребывании на глубине под влиянием давления в крови растворяется газы. При быстрой декомпрессии газы переходят из растворенного состояния в газовое, образуются пузырьки, что приводит к газовой эмболии (кесонная болезнь). Симптоматика: боли в мышцах, головокружение, рвота, одышка, потеря созна-ния. В этих случаях необходимо быстро человека поместить в компрессионную камеру, создать в ней давление, соответствующее давлению на той глубине, с которой поднят человек, что опять приведет к растворению пузырьков газа в крови, а затем постепенно производят медленное снижение давления (деком-прессию). Переход газов из растворенного состояния в газообразное будет происходить медленно и будут удаляться из организма не создавая угрозы газовой эмболии.


Дата добавления: 2015-08-27; просмотров: 94 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
ИТОГИ ПРАКТИКИ| Дыхание чистым кислородом

mybiblioteka.su - 2015-2024 год. (0.013 сек.)