Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Тензор деформации

Сущность ферромагнетизма | Термодинамические свойства | Петля гистерезиса | Ферромагнитные материалы | Необычные магнитные материалы | Закон Гука | Однородная деформация | Кручение стержня; волны сдвига | Собирая теперь все воедино, находим | Изгибание балки |


Читайте также:
  1. Величины, характеризующие деформацию тела. Коэффициенты деформации.
  2. Влияние внешнего трения на неравномерность деформации
  3. Влияние неоднородности свойств на неравномерность деформации.
  4. Возражения против гипотезы вейлевского тензора
  5. ДАТЧИКИ ДЕФОРМАЦИИ
  6. Деформации и напряжения при сварке
  7. Деформации при длительном действии нагрузки.

В предыдущей главе мы говорили о возму­щениях упругих тел в простых случаях. В этой главе мы посмотрим, что может происходить внутри упругого материала в общем случае. Как описать условия напряжения и деформа­ции в большом куске желе, скрученном и сжа­том каким-то очень сложным образом? Для этого необходимо описать локальную деформацию в каждой точке упругого тела, а это можно сде­лать, задав в ней набор шести чисел — компо­нент симметричного тензора. Ранее (в гл. 31) мы говорили о тензоре напряжений, теперь же нам потребуется тензор деформации.

Предположим, что мы взяли недеформиро­ванный материал и, прикладывая напряжение, наблюдаем за движением маленького пятныш­ка примеси, попавшей внутрь. Пятнышко, которое вначале находилось в точке Р и имело положение г=(x, у, z), передвигается в новую точку Р', т. е. в положение r'= (х', у', z'), как это показано на фиг. 39.1.

 

 

 

Фиг. 39.1. Пятнышко примеси в материале из точки Р недеформированного кубика после деформации пере­мещается в точку Р'.

 

Мы будем обозначать через и вектор перемещения из точки Р в точ­ку Р', т. е.

u = r'-r. (39.1)

Перемещение и зависит, конечно, от точки Р, из которой оно выходит так, что и есть векторная функция от г или от (х, у, z).

Сначала рассмотрим простейший случай, ког­да деформация по всему материалу постоянна, т. е. то, что называется однородной деформацией. Предположим, например, что мы взяли балку из како­го-то материала и равномерно ее растянули. Иначе говоря, мы просто равномерно изменили ее размер в одном направле­нии, скажем в направлении оси х (фиг. 39.2).

 

 

Фиг. 39.2. Однородная деформация растяжения.

 

Перемещение ux пятнышка с координатой х пропорционально самому х.

Действительно,

 

 

Мы будем записывать ux следующим образом:

иxххх.

Разумеется, константа пропорциональности ехх это то же, что наше старое отношение Dl/l. (Скоро вы увидите, почему нам потребовался двойной индекс.)

Если же деформация неоднородна, то связь между х и ux в материале будет изменяться от точки к точке. В таком общем случае мы определим ехх как своего рода локальную величину Dl/l, т. е.

 

 

Это число, которое теперь будет функцией х, у и z, описывает величину растяжения в направлении оси х по всему куску желе. Возможны, конечно, растяжения и в направлении осей у и z. Мы будем описывать их величинами

 

 

Кроме того, нам нужно описать деформации типа сдви­гов. Вообразите, что в перво­начально невозмущенном желе вы выделили маленький кубик. Нажав на желе, мы изменяем его форму, и наш кубик может превратиться в параллелограмм (фиг. 39.3).

 

 

Фиг. 39.3. Однородная деформация сдвига.

 

При такой дефор­мации перемещение в направлении х каждой частицы пропорционально ее координате у:

 

а перемещение в направлении у пропорционально х:

uy=(q/2)x. (39.5)

Таким образом, деформацию сдвигового типа можно описать с помощью

ux=e xy y u у=eyxx,

где

 

 

Теперь вы сочтете, что при неоднородной деформации обоб­щенную деформацию сдвига можно описать, определив вели­чины еxy и еyx следующим образом:

 

 

Однако здесь есть некая трудность. Предположим, что пере­мещения uх и uy имеют вид

 

 

Они напоминают уравнения (39.4) и (39.5), за исключением того, что при uy стоит обратный знак. При таком перемещении маленький кубик из желе претерпевает простой поворот на угол q/2 (фиг. 39.4).

 

 

Фиг. 39.4.Однородный поворот. Никаких деформаций нет.

 

Никакой деформации здесь вообще нет, а есть просто вращение в пространстве. При этом никакого возмущения материала не происходит, а относительное поло­жение всех атомов совершенно не изменяется. Нужно как-то устроить так, чтобы чистое вращение не входило в наше опре­деление деформации сдвига. Указанием может послужить то, что если дuy/дх и дux/ду равны и противоположны, никакого напряжения нет; этого можно добиться, определив

Для чистого вращения оба они равны нулю, но для чистого сдвига мы получаем, как и хотели, ехууx.

В наиболее общем случае возмущения, который наряду со сдвигом может включать растяжение или сжатие, мы будем определять состояние деформации заданием девяти чисел:

 

 

Они образуют компоненты тензора деформации. Поскольку тензор этот симметричен (согласно нашему определению, еху всегда равно еух), то на самом деле различных чисел здесь только шесть. Вы помните (см. гл. 31) общее свойство всех тен­зоров — элементы его преобразуются при повороте подобно произведению компонент двух векторов. (Если А и В — век­торы, то СijiВj тензор.) А каждое наше eij есть про­изведение (или сумма таких произведений) компонент вектора

u= (uх, uу, uz) и оператора Ñ=(д / д x, д / д y, д / д z), который, как

мы знаем, преобразуется подобно вектору. Давайте вместо х, у и z писать x1, x2 и x3, а вместо uх, uy и uг писать u1, u2 и u 3; тогда общий вид элемента тензора eij будет выглядеть так:

 

 

где индексы i и j могут принимать значения 1, 2 или 3.

Когда мы имеем дело с однородной деформацией, которая может включать как растяжения, так и сдвиги, то все eij постоянные, и мы можем написать

uхххх+ехуy+ехzг. (39.9)

(Начало координат выбрано в точке, где и равно нулю.) В этих случаях тензор деформации eij дает соотношение между двумя векторами — вектором координаты r=(x, y, z) и вектором перемещения u= (uх, uу, uг).

Если же деформация неоднородна, то любой кусочек желе может быть как-то искажен и, кроме того, могут возникнуть местные повороты. Когда все возмущения малы, мы получаем

 

 

где wij, — антисимметричный тензор

 

 

описывающий поворот. Нам незачем беспокоиться о поворотах; займемся только деформацией, которая описывается симмет­ричным тензором еij.


Дата добавления: 2015-08-20; просмотров: 154 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Продольный изгиб| Тензор упругости

mybiblioteka.su - 2015-2024 год. (0.011 сек.)