Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

По деформации изгиба

Читайте также:
  1. Деформации и их характеристики
  2. Как называется изгиб, если плоскость действия изгибающего момента проходит через одну из главных центральных осей поперечного сечения стержня?
  3. Определение модуля Юнга методом изгиба

Цель работы: определение модуля упругости (модуля Юнга) по деформации изгиба стержней прямоугольного сечения.

КРАТКАЯ ТЕОРИЯ

Деформация изгиба возникает тогда, когда к стержню, один конец которого закреплен (рис.1 а) или к стержню, свободно лежащему на опорах (рис.1 б) приложена сила, перпендикулярная к его оси. И в том и в другом случае стержень изгибается и характеристикой этой деформации может служить стрела прогиба l.

Во введении к данному циклу работ было показано, что деформация изгиба представляет собой неоднородную деформацию растяжения-сжатия. Там же было получены выражения (формулы (12)и (13) введения) для определения стрел прогиба для обеих ситуаций, приведенных на рис.1.

В данной лабораторной работе будет исследоваться изгиб стержня прямоугольного сечения, свободно лежащего на опорах (рис.1 б). В этом случае стрела прогиба определяется соотношением

, (1)

где L - длина стержня, Е – модуль Юнга материала стержня, Р – сила, действующая на середину стержня. Величина I определяется только формой сечения стержня и рассчитывается по формуле

. (2)

Величины, входящие в эту формулу, поясняются на рис.2. Буквой О обозначен центр масс сечения стержня. Через него проходит нейтральный слой, который не испытывает деформации сжатия-растяжения.

В данной работе используется стержень прямоугольного сечения (рис.3) Очевидно, что в этом случае центр масс сечения совпадает с его геометрическим центром и, следовательно, b1=b2=b/2. Здесь b – размер стержня в направлении действия нагрузки, иначе говоря, толщина стержня. Кроме того, очевидно, что величина а не зависит от х (стержень имеет постоянную ширину. Теперь интеграл (2) вычисляется просто:

(3)

Подставляя полученное выражение в (1), получаем

или , где (4)

Выражение (4) подсказывает следующий метод определения модуля Юнга. Надо получить экспериментальную зависимость стрелы прогиба l от нагрузки Р и определить тем или иным способом коэффициент пропорциональности А. Далее, проведя измерения геометрических размеров стержня, рассчитать Е.

МЕТОДИКА ЭКСПЕРИМЕНТА

Установка для определения экспериментальной зависимости стрелы прогиба l от нагрузки состоит из двух стоек со стальными призмами, на которых располагается стержень прямоугольного сечения из исследуемого материала. Грузы, вес которых определяется на технических весах, подвешиваются к стремени, которое помещают на одинаковом расстоянии от стоек. Стрела прогиба измеряется с помощью микрометра, установленного вертикально над стержнем в месте расположения стремени. Контакт острия на стебле микрометра со стержнем фиксируется световым индикатором.

Предварительно измеряются геометрические параметры установки, т.е. величины L, a и b после чего исследуемый стержень размещается на опорах.

Далее необходимо убедиться, будут ли деформации стержня, возникающие в наших экспериментах, упругими, поскольку только в этом случае для вычисления модуля Юнга справедлива формула (1). Для выяснения этого обстоятельства используется следующая процедура. Микрометрический винт приводится в контакт со стержнем и производится отсчет показаний микрометра. Используя все имеющиеся грузы, создается максимально возможная (для данной работы) нагрузка стержня. Затем грузы снимаются, микровинт вновь приводится в контакт со стержнем и вновь производится отсчет показаний микрометра. Если показания микрометра до и после нагружения стержня совпадают в пределах погрешности измерений, можно говорить, что форма стержня восстановилась и, тем самым, утверждать, что при проведении экспериментов возникающие деформации будут упругими.

Стрела прогиба в данной установке определяется как разность показаний микрометра до нагружения стержня n0 и при нагрузке стержня n, т.е. l=n0 –n, а нагрузка рассчитывается по формуле Р=mg. Используя эти соотношения можно несколько изменить формулы (4) так, чтобы в них входили результаты прямых измерений

или l = n0 –n = B×m, где . (5)

Определив коэффициент пропорциональности В по экспериментальной зависимости стрелы прогиба от массы груза теперь нетрудно рассчитать значение модуля Юнга.

. (6)

Экспериментальная зависимость l от m при увеличении нагрузки снимается следующим образом. В отсутствие нагрузки отсчитывается показание микрометра n0. Подвешивается груз массой m1 и отсчитывается показание микрометра n1. Очевидно, l1 = n0 –n1. Добавляется груз массой m2. Суммарная масса нагрузки будет составлять m1+ m2. Отсчитывается показание микрометра n2, определяется l2. Добавляется следующий груз и т.д.

Аналогичным образом определяется экспериментальная зависимость l от m при разгрузке. Отсчитывается показание микрометра при максимальной подвешенной массе, убирается один груз, вновь отсчитывается показание микрометра и так до тех пор, пока не будут сняты все грузы. В отсутствии нагрузки определяется новое значение n0.


Дата добавления: 2015-11-30; просмотров: 26 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.006 сек.)