Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Зонная теория кристаллов

Читайте также:
  1. I. ОБЩЕСТВЕННАЯ ТЕОРИЯ СОЦИОЛОГИИ
  2. I. Общественная теория социологии 21
  3. I. Общественная теория социологии 23
  4. I. Общественная теория социологии 25
  5. I. Общественная теория социологии 25
  6. I. Общественная теория социологии 27
  7. I. Общественная теория социологии 29

Квантовая теория энергетич. спектра электронов в кристалле, согласно которой этот спектр состоит из чередующихся зон (полос) разрешённых и запрещённых энергий. З. т. объясняет ряд св-в и явлений в кристалле, в частности разл. хар-р электропроводности тв. тел. В основе З. т. лежит т. н. одноэлектронное приближение, базирующееся на след. упрощениях: 1) ат. ядра в узлах идеальной крист. решётки неподвижны (их масса велика по сравнению с массой эл-нов). 2) Эл-н движется в поле периодич. потенциала U(r) (r — пространств. координата точки), к-рое складывается из полей, создаваемых ядрами и остальными эл-нами. 3) Это периодич. поле обладает трансляц. инвариантностью: U(r+an)=U(r), (1) где аn — вектор n-го узла решетки. В такой модели для волн. ф-ции y эл-на в решётке выполняется теорема Блоха: yk(r)=uk(r)expkr, (2) где uk(r+a)=uk(r), k — волновой вектор эл-на. Это означает, что yk(r) имеет вид волн. ф-ции свободного эл-на, амплитуда к-рой промодулирована в пр-ве с периодом решётки. В соответствии с З. т. движение эл-на в решётке сходно с движением эл-на в свободном пр-ве, однако фактически носит туннельный хар-р.

 

24. Металлы, диэлектрики, полупроводники. Собственная проводимость полупроводников.

Металлы - группа элементов, обладающая характерными металлическими св-вами, такими как высокая тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск. Диэлектрик (изолятор) — материал, плохо проводящий или совсем не проводящий эл.ток. Концентрация свобод.носителей заряда в диэлектрике не превышает 108 см−3. Осн. св-во диэлектрика состоит в способности поляризоваться во внешнем эл.поле. С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещенной зоны больше 3 эВ. Полупроводники́ — материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Осн.св-вом этих материалов явл-ся увеличение эл.проводимости с ростом температуры.

Электропроводимость химически чистого полупроводника возможна в том случае, когда ковалентные связи в кристаллах разрываются и появляются свобод.электроны. Например, нагревание даже до небольших температур приводит к разрыву ковалентных связей, появлению свободных электронов и возникновению собственной электронной проводимости чистого полупроводника (проводимости n-типа). После ухода электрона со своего места в этой области кристалла нарушилась его нейтральность. В том месте, откуда ушел электрон, возникает избыточный положительный заряд — образуется положительная "дырка".Она обладает«+»зарядом, равным по модулю заряду электрона. На освободившееся от электрона вакантное место — дырку — может перескочить другой электрон, а это эквивалентно перемещению дырки в направлении, противоположном направлению движения электрона. В отсутствие внеш.эл.поля эти свобод.электроны и дырки движутся в кристалле полупроводника хаотически.

 

25. Примесная проводимость полупроводников.

Проводимость полупроводников, обусловленная примесями, называется примесной проводимостью, а сами полупроводники — примесными полупроводниками. Примесная проводимость обусловлена примесями (атомы посторонних элементов), а также дефектами типа избыточных атомов (по сравнению со стехиометрическим составом), тепловыми (пустые узлы или атомы в междоузлиях) и механическими (трещины, дислокации и т. д.) дефектами. Наличие в полупроводнике примеси существенно изменяет его проводимость. Например, при введении в кремний примерно 0,001 ат.% бора его проводимость увеличивается примерно в 10б раз. Примесную проводимость полупроводников рассмотрим на примере Ge и Si, в которые вводятся атомы с валентностью, отличной от валентности основных атомов на единицу. Например, при замещении атома германия пятивалентным атомом мышьяка (рис. 319, а) один электрон не может образовать ковалентной связи, он оказывается лишним и может быть легко при тепловых колебаниях решетки отщеплен от атома, т. е. стать свободным. Образование свободного электрона не сопровождается нарушением ковалентной связи; следовательно, в отличие от случая дырка не возникает. Избыточный положительный заряд, возникающий вблизи атома примеси, связан с атомом примеси и поэтому перемещаться по решетке не может. С точки зрения зонной теории рассмотренный процесс можно представить следующим образом (рис. 319, б). Введение примеси искажает поле решетки, что приводит к возникновению в запрещенной зоне энергетического уровня D валентных электронов мышьяка, называемого примесным уровнем. В случае германия с примесью мышьяка этот уровень располагается от дна зоны проводимости на расстоянии DE0=0,013 эВ. Так как D ED<kT, то уже при обычных температурах энергия теплового движения достаточна для того, чтобы перебросить электроны примесного уровня в зону проводимости; образующиеся при этом положительные заряды локализуются на неподвижных атомах мышьяка и в проводимости не участвуют. Таким образом, в полупроводниках с примесью, валентность которой на единицу больше валентности основных атомов, носителями тока являются электроны; возникает электронная примесная проводимость (проводимость n-типа). Полупроводники с такой проводимостью называются электронными (или полупроводниками n-типа). Примеси, являющиеся источником электронов, называются донорами, а энергетические уровни этих примесей — донорными уровнями.

 

 

26. p-n переход. p-n-перехо́д

(или электронно-дырочный переход. Зоной p-n-перехода называется область полупроводника, в которой имеет место пространственное изменение типа проводимости от электронной n к дырочной p.

Электронно-дырочный переход может быть создан различными путями:

в объёме одного и того же полупроводникового материала, легированного в одной части донорной примесью (n-область), а в другой — акцепторной (p-область);

на границе двух различных полупроводников с разными типами проводимости.

Если p-n-переход получают вплавлением примесей в монокристаллический полупроводник, то переход от n- к р-области происходит скачком (резкий переход). Если используется диффузия примесей, то образуется плавный переход.При контакте двух областей n- и p- типа из-за градиента концентрации носителей заряда возникает диффузия последних в области с противоположным типом электропроводности. В p-области вблизи контакта после диффузии из неё дырок остаются нескомпенсированные ионизированные акцепторы (отрицательные неподвижные заряды), а в n-области — нескомпенсированные ионизированные доноры (положительные неподвижные заряды). Образуется область пространственного заряда (ОПЗ), состоящая из двух разноимённо заряженных слоёв. Между нескомпенсированными разноимёнными зарядами ионизированных примесей возникает электрическое поле, направленное от n-области к p-области и называемое диффузионным электрическим полем. Данное поле препятствует дальнейшей диффузии основных носителей через контакт — устанавливается равновесное состояние (при этом есть небольшой ток основных носителей из-за диффузии, и ток неосновных носителей под действием контактного поля, эти токи компенсируют друг друга). Между n- и p-областями при этом существует разность потенциалов, называемая контактной разностью потенциалов. Потенциал n-области положителен по отношению к потенциалу p-области. Обычно контактная разность потенциалов в данном случае составляет десятые доли вольта.Внешнее электрическое поле изменяет высоту барьера и нарушает равновесие потоков носителей тока через барьер. Если положительный потенциал приложен к p-области, то потенциальный барьер понижается (прямое смещение), а ОПЗ сужается. В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть барьер. Как только эти носители миновали p — n-переход, они становятся неосновными. Поэтому концентрация неосновных носителей по обе стороны перехода увеличивается (инжекция неосновных носителей). Одновременно в p- и n-областях через контакты входят равные количества основных носителей, вызывающих компенсацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через переход, который с ростом напряжения экспоненциально возрастает.

Приложение отрицательного потенциала к p-области (обратное смещение) приводит к повышению потенциального барьера. Диффузия основных носителей через переход становится пренебрежимо малой. В то же время потоки неосновных носителей не изменяются (для них барьера не существует). Неосновные носители заряда втягиваются электрическим полем в p-n-переход и проходят через него в соседнюю область (экстракция неосновных носителей). Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через p-n-переход течёт ток Is (ток насыщения), который обычно мал и почти не зависит от напряжения. Таким образом, вольт-амперная характеристика p-n-перехода обладает резко выраженной нелинейностью. При изменении знака U значение тока через переход может изменяться в 105 — 106 раз. Благодаря этому p-n-переход может использоваться для выпрямления переменных токов (диод).

 


Дата добавления: 2015-11-30; просмотров: 145 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.007 сек.)