Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Тормозное рентгеновское излучение

Читайте также:
  1. Глава 22. Рентгеновское зрение
  2. Глава ХVI. Тепловое излучение
  3. ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ
  4. Любовь и устремление к Вознесённому Существу даёт возможность получить Его Излучение, которое нельзя привлечь никаким другим способом.
  5. РАДИОАКТИВНОЕ ИЗЛУЧЕНИЕ
  6. ЭФИРНОЕ ИЗЛУЧЕНИЕ

При бомбардировке анода сильно ускоренными электронами возникает рентгеновское излучение представляющее собой эл.магн. волны с длиной волны 10-12 – 10-8 м. Спектр излучения зависит как от материала анода так и от энергии электронов, спектр представляет собой наложение сплошного спектра ограниченного со стороны коротких длин волн lминназываемое границей сплошного спектра, и линейчатого спектра – совокупности отдельных линий появляющихся на фоне основного спектра. Для объяснения свойств теплового излучения пришлось ввести представление об испускании электромагнитного излучения порциями (квантами). Квантовая природа излучения подтверждается также существованием коротковолновой границы тормозного рентгеновского спектра. Рентгеновское излучение возникает при бомбардировке твердых мишеней быстрыми электронами (рис. 2.6) Здесь анод выполнен из W, Mo, Cu, Pt – тяжелых тугоплавких или с высоким коэффициентом теплопроводности металлов.

Рис. 2.6

Только 1–3 % энергии электронов идет на излучение, остальная часть выделяется на аноде в виде тепла, поэтому аноды охлаждают водой. Попав в вещество анода, электроны испытывают сильное торможение и становятся источником электромагнитных волн (рентгеновских лучей). Начальная скорость электрона при попадании на анод определяется по формуле:

где U – ускоряющее напряжение. Заметное излучение наблюдается лишь при резком торможении быстрых электронов, начиная с U ~ 50 кВ, при этом (с – скорость света). В индукционных ускорителях электронов – бетатронах, электроны приобретают энергию до 50 МэВ, = 0,99995 с. Направив такие электроны на твердую мишень, получим рентгеновское излучение с малой длиной волны. Это излучение обладает большой проникающей способностью. Согласно классической электродинамике при торможении электрона должны возникать излучения всех длин волн от нуля до бесконечности. Длина волны, на которую приходится максимум мощности излучения, должна уменьшиться по мере увеличения скорости электронов, что в основном подтверждается на опыте. Однако есть принципиальное отличие от классической теории: нулевые распределения мощности не идут к началу координат, а обрываются при конечных значениях – это и есть коротковолновая граница рентгеновского спектра. Существование коротковолновой границы непосредственно вытекает из квантовой природы излучения. Действительно, если излучение возникает за счёт энергии, теряемой электроном при торможении, то энергия кванта не может превысить энергию электрона eU, т.е. hv<=eU, отсюда или. В данном эксперименте можно определить постоянную Планка h. Из всех методов определения постоянной Планка метод, основанный на измерении коротковолновой границы тормозного рентгеновского спектра, является самым точным.

 


Дата добавления: 2015-11-30; просмотров: 42 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.011 сек.)