Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Проверка работы системы



Читайте также:
  1. Gt; Первый этап — проверка итогов предыдущей ра­боты.
  2. I. Задание для самостоятельной работы
  3. I. Задания для самостоятельной работы
  4. I. Задания для самостоятельной работы
  5. I. Задания для самостоятельной работы
  6. I. Задания для самостоятельной работы
  7. I. Задания для самостоятельной работы

Для проверки работы системы было записано при помощи физической модели конструкций «с шумами» и программы Adobe Audition 3, два wave-файла с сигналами дефектов «стука» и «треска» по 10 секунд каждый, информацию о которых имеется в банке дефектов. Частота дискретизации wave-файлов равна 44100Гц, что допустимо для программы. Проведем диагностику этих сигналов.

Загрузим wave-файл «Стуки.wav» содержащий звуковые сигналы стуков. Посмотрим график сигнала с помощью кнопки «График», чтобы убедиться о правильности импортирования wave-файла. График представлен на рис. 3

 

Рис. 3 График сигнала из wave-файла «Стуки.wav»

 

Как видно из графика, сигнал загружен правильно и содержит в себе 11 ярко выраженных всплеска амплитуды. Загрузим банк дефектов Data.xlsx с помощью меню и проведем диагностику данного сигнала, нажав кнопку «Диагностика». Результат диагностики представлен на рис. 4.

 

Рис. 4 Результат диагностики сигнала «Стук.wav»

 

Время процедуры диагностирования 2 мин. 27 сек. Как видно из рисунка 4, программа выдала гораздо больше сообщений о наличие присутствия признаков дефекта «стук», чем самих звуков данного дефекта в сигнале. Это обусловлено тем, что программа сверяет последовательно отрезки сигнала по 0,2сек., что не предусматривает того, что сигнал дефекта может быть длиннее этого отрезка и находиться одновременно в нескольких таких рядом стоящих отрезках. В последующей модернизации сигнала необходимо учесть данный факт. Однако проанализировав данный сигнал на слух с помощью Adobe Auditio 3 убеждаемся, что все сообщения, выданные программой DiagSound соответствуют действительности.

Загрузим wave-файл «tre.wav» с набором сигналов дефекта «Треск». Построим его график. График представлен на рис. 5

Рис.5 График сигнала из wave-файла «tre.wav»

 

Как видно из графике, сигнал не имеет больших пиков, как в случае с «Стук.wav», что говорит о низкой амплитуде сигналов дефектов. Проведем диагностик данного сигнала. Результат диагностики сигнала представлен на рис. 6. Время диагностики 3мин. 17сек.

 

Рис. 6 Результат диагностики сигнала «tre.wav»

 

Как видно из рисунка 6 сообщений так же как и в первом случае выдано больше, чем ожидалось и процент схожести ниже. При анализе на слух данного сигнала с помощью Adobe Audition обнаруживаем наличие в сигнале постороннего шума (шорканье ногтей по корпусу гитары, скрип струн, щелчки, возникшие из-за несовершенства АЦП и др.). Данная программа не учитывает погрешности вносимые внешним воздействием, что говорит о несовершенстве данной программы. При последующей модернизации программы необходимо будет учесть данный факт и добавить модуль по выявлению и очищению сигнала от постороннего шума.

Так же необходимо отметить ресурсоемкость данной программы. На рис. 7 видно, что программа из-за больших объемов данных занимает около 144мб оперативной памяти, что не приемлемо для практического применения. Так же видно, что большая часть времени тратиться на работу с банком дефектов реализованного в Excel-таблице. При модернизации программы необходимо создать подходящую базу данных, обеспечивающую более быструю работу с данными.

 

Рис. 7 Ресурсоемкость программы DiagSound

 

 


Дата добавления: 2015-07-11; просмотров: 66 | Нарушение авторских прав






mybiblioteka.su - 2015-2024 год. (0.007 сек.)