Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Способы защиты трубопроводов от внутренней коррозии



Читайте также:
  1. II. Подготовка к Внутренней Улыбке
  2. THORN; возможность протекания процесса коррозии, но не дает реальных представлений о скорости коррозии.
  3. V3: Основные способы получения психологической информации в психодиагностике
  4. VII. Гидравлический расчет оборудования и трубопроводов.
  5. Автоматика включения синхронных генераторов на параллельную работу. Способы автоматического включения, микропроцессорные автоматические синхронизаторы
  6. Административно-правовые основы управления в области труда и социальной защиты
  7. Алгоритм. Способы описания алгоритмов

 

Существующая схема эксплуатации большинства месторождений с поддержанием пластового давления за счет закачки в пласт сточной воды способствует повышению агрессивности среды, в которой "работают" трубы при добыче и транспортировке сырья.

Добиться повышения надежности и снижения аварийности промысловых трубопроводов можно только за счет применения комплексных мер.

 

МЕХАНИЧЕСКИЕ СПОСОБЫ ЗАЩИТЫ

 

Кардинальным средством борьбы с коррозионным повреждением стальных труб является замена их на пластмассовые.

Пластмассовые трубы могут быть двух видов:

- на малые давления до 1.0 МПа — из полиэтилена низкого давления (ПНД), а также из полипропилена, поливинилхлорида, полибутена, акрилонитрилбутадиона;

- на давление 4.0 – 6.0 МПа и выше - из композитных материалов: стеклопластиковые.

Полиэтиленовые трубы имеют в 7 раз меньшую массу, чем стальные. Для их монтажа не требуется тяжелого подъемно-транспортного оборудования. Они обладают большой эластичностью, высокой гладкостью, вследствие чего их пропускная способность увеличивается на 2 – 3 %.

Полиэтиленовые трубы могут использоваться для транспорта минерализованных вод любой агрессивности (ГОСТ 18599-83).

Что касается транспорта нефти, нефтяной эмульсии, газового конденсата по напорным трубопроводам из полиэтиленовых труб, то здесь следует учитывать эффект набухаемости полиэтилена.

С увеличением концентрации сорбированной нефти снижается прочность полиэтилена. Например, при увеличении концентрации нефти в полиэтилене до 5 % его прочность снижается на 10 %.

Таким образом, основной недостаток полиэтиленовых труб — малая прочность. Поэтому во всем мире ведутся исследования по созданию пластмассовых труб, c одной стороны, химически стойких против агрессивных сред, с другой - обладающих прочностью, соизмеримой со стальными трубами.

Решением этой проблемы являются трубы из композитных материалов: стеклопластиков, из армированных термопластов.

Теплопроводность стеклопластика в 250 раз меньше, чем у металла, то есть он обладает повышенными теплоизоляционными характеристиками.

С 1988г. стеклопластиковые трубы безотказно работают в качестве НКТ, диаметр 89 мм. Положительные результаты получены по системе нефтесбора: диаметр 159 мм и давление 2,8 МПа. Отрицательные результаты получены при испытании стеклопластиковых труб в системе ППД в качестве разводящего водовода (давление 12.5 МПа): не выдержали давления клеевые соединения, повороты (колена).

В основе последней разработки компании Ameron (Нидерланды), специализирующейся на выпуске стеклопластиковых труб для нефтяной промышленности — технология стальной полосы, применяемая компанией British Aerospace для изготовления высокопрочных оболочек двигателей космических ракет. Новый материал SSL — это ламинированный композитный материал, который сочетает преимущества высокопрочной стали с коррозионной стойкостью стекловолокна. Из него производятся легкие, гладкие, антикоррозионные трубы, выдерживающие давление почти до 40 МПа — для малых диаметров и до 4 МПа — для больших диаметров и температуру до 110 оС.

Трубы Bondstrand SSL состоят из слоев стальной ленты, заключенных внутри эпоксидной, армированной стекловолокном, оболочки. Они могут использоваться для сооружений выкидных линий, линий нефтесбора, подводных трубопроводов и трубопроводов для нагнетания воды в скважины, а также как НКТ и обсадные трубы.

Толщина стенки трубы Bondstrand SSL (в несколько раз) меньше толщины стенки обычной стекловолокнистой трубы, что обеспечивает более высокую пропускную способность (при одинаковом давлении).

Соединительная система Койл-Лок (Coil-Lock) — конусное резьбовое соединение с пластичной спиральной шпонкой — обеспечивает трубам Bondstrand SSL прочность и герметичность, быстроту монтажа. Новые трубы имеют еще одно ценное свойство: электропроводный стальной слой позволяет осуществлять электромониторинг трубопровода, уложенного под землей.

Минимальный срок эксплуатации таких труб в условиях Сибири - 20 лет, стандартный срок - более 50 лет.

В России пионером в области применения труб Bondstrand SSL является компания "Славнефть-Мегионнефтегаз". Она начала их использовать в 1995 г. На 2000 г. российские компании заказали фирме Ameron 262 км таких труб. В Казахстан за последние 2 года поставлено 116 км труб.

Потребителями являются Тюменская Нефтяная компания, "Мегионнефтегаз", "Черногорнефть", "Ваньеганнефть" и т.д.

Задача надежности защиты от внутренней коррозии решается с помощью технологии футерования трубных плетей полиэтиленом и специальной конструкцией стыка. Однако, единой методики выбора типа покрытия в зависимости от свойств транспортируемой среды и условий эксплуатации трубопровода еще не выработано.

В начале 80-х годов в связи с ростом коррозионной активности добываемых жидкостей и увеличением протяженности трубопроводов стали применяться гибкие трубы.

В первую очередь гибкие трубы начали применяться в системе ППД на месторождениях с особо агрессивными средами, содержащими:

· сероводород до 600 мг/л;

· углекислый газ до 1200 м/л;

· высокоминерализованные растворы;

· активные ионы хлора (Cl-);

· cвободный кислород.

Срок службы стальных трубопроводов в этих условиях не превышал 1 года, а срок промысловой наработки гибких труб (в АО «Самаранефтегаз») приближается к 15 годам.

Техническая характеристика гибких труб для выкидных линий нефтяных скважин, водоводов пластовых сточных вод и технологических трубопроводов приведена в таблице 6.1.

 

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ГИБКИХ ТРУБ «РОСФЛЕКС»

Таблица 6.1

Показатели Внутренний диаметр, мм
      150*
Рабочее давление, МПа               20*     20*  
Наружный диаметр, мм                        
Масса 1 м, кг 6.0 7.5 7.8 8.0 8.0 9.5   10.5 10.5 12.0 12.5 16.0
Длина секции, м, не более        
Тип соединения Фланцевый или сварной
                           

*Готовится производство.

 

Трубы выпускаются внутренним диаметром 50, 75 и 100 мм на рабочее давление до 20 МПа, массой 1м не более 12 кг, максимальная длина секции до 350 м. Готовится производство труб диаметром 150 мм.

Гибкие трубы состоят из внутренней полимерной камеры 1, армирующих слоев 2, наружной полимерной оболочки 3 и концевых соединений 4 (рисунок 6.1).

Гибкие трубы рассчитаны на траншейную прокладку и прокладку по поверхности земли.

Кроме региона Средней Волги гибкие трубы работают и в других климатических условиях при температуре окружающей среды от – 45 0С до + 50 0С: в Западной Сибири, республики Коми, на о.Сахалин. Гибкие водоводы и выкидные линии работают также в Казахстане, на полуострове Мангышлак и в Азербайджане на морском месторождении.

 

Рисунок 6.1 — Конструкция гибкой трубы

 

ТЕХНОЛОГИЧЕСКАЯ ЗАЩИТА ТРУБОПРОВОДОВ

 

На нефтяных месторождениях преимущественное развитие получили однотрубные системы сбора продукции скважин. Возрастание объемов попутно добываемой воды приводит к перегрузке сборных трубопроводов и снижению их коррозионной надежности, сроков эксплуатации.

Технико-экономические показатели и надежность систем сбора нефти тесно связаны с техникой и технологией разделения продукции скважин.

Как показано выше, в качестве принципа технологии первичного (предварительного) разделения продукции скважин на современном этапе выделяется дифференцированный или путевой сброс свободной воды, то есть отбор воды во всех точках технологической схемы, где она выделяется в виде свободной фазы.

Это позволяет снизить нагрузки на сепараторы последующий ступеней, отстойники, печи, насосное оборудование, повысить их эксплуатационную надежность, а иногда и исключить из технологической схемы часть перечисленного оборудования.

Путевой сброс воды из продукции скважин может осуществляться по отдельным коллекторам, вблизи наиболее обводненных кустов скважин, на пониженных участках трассы, где скапливается свободная вода, вблизи существующих кустовых насосных станций системы ППД.

Основным требованием к технологии путевого сброса воды является его осуществление без применения сложного технологического оборудования, требующего присутствия обслуживающего персонала, и при естественной температуре продукции скважин. При необходимости для разрушения эмульсии продукция может обрабатываться реагентом-деэмульгатором. Степень предварительного обезвоживания нефти при путевом сбросе должна соответствовать агрегативной устойчивости эмульсии (на входе в установку), чтобы при дальнейшем транспорте не происходило выделение свободной воды из эмульсии или оно было минимальным.

 

ХИМИЧЕСКАЯ ЗАЩИТА ТРУБОПРОВОДОВ

 

Ингибиторы — это вещества органического или неорганического происхождения, которые обладают способностью снижать скорость коррозионного процесса.

Ингибиторы — это поверхностно-активные вещества.

Механизм действия: полярные молекулы ингибитора адсорбируются на внутренней поверхности трубы, образуя пленку, защищающую внутреннюю поверхность трубы от контакта с водой. Таким образом, устраняется одно из необходимых условий для протекания электрохимической реакции: из-за наличия защитной пленки не может происходить разряд водородных ионов и процесс растворения металла затормаживается. Ингибитор такого типа будет называться катодным ингибитором, т.к. он влияет на скорость реакции на катоде. Существуют анодные ингибиторы, которые влияют на скорость реакции на аноде.

В промысловых условиях скорость внутритрубной коррозии определяется по образцам-свидетелям, вводимым в газонефтеводяной поток:

(6.15)

где — скорость коррозии; , — масса образца стали до опыта и после него, г; — продолжительность опыта, ч; — поверхность образца, м2.

Эффективность ингибитора:

(6.16)

или коэффициент торможения:

, (6.17)

где и — скорости коррозии без ингибитора и с ингибитором.

 


Дата добавления: 2015-07-11; просмотров: 236 | Нарушение авторских прав






mybiblioteka.su - 2015-2024 год. (0.01 сек.)