Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Синхронизация ячеистой сети SDH



Читайте также:
  1. Вспышка: высокоскоростная синхронизация.
  2. Добавление к тексту эффектов появления и исчезания и его синхронизация с видео
  3. Зачем нужна высокоскоростная синхронизация?
  4. ЛР №6. Рисование масок, синхронизация движений между слоями
  5. Синхронизация
  6. Синхронизация и локализация СКМ
  7. Синхронизация кольцевой сети SDH

 

Рассмотрим схему синхронизации в ячеистой сети SDH. Один из примеров формирования цепей синхронизации в такой сети приведен на рис.3-18 [115]. Сеть имеет 12 узлов и несложную транспортную топологию звезды, включающую несколько линейных участков, связанных через узлы концентраторов.

Для облегчения задачи построения сети синхронизации схема разбивается на несколько цепей синхронизации, учитывая при этом особенности топологии исходной транспортной сети. Полученные цепи: W, X, Y, Z - показаны в нижней части рис.З-18. Цифрами 1 и 2 на этом рисунке показаны приоритеты в использовании сигналов синхронизации. Сплошной линией показаны основные каналы синхронизации, пунктиром - резервные каналы синхронизации. Мастер-узлы заштрихованы.

Для распределения синхронизации используется та же иерархическая схема. Каждая цепь синхронизации может быть обеспечена одним или двумя узлами, получающими синхронизацию от внешних источников (PRC). Эти узлы называют мастер-узлами. Источник PRC, расположенный на основной станции, является внешним PRC, от которого получают синхронизацию два мастер-узла W и X цепей W и X. Цепи Y и Z имеют общий мастер-узел C&D, который получает сигнал синхронизации от последнего узла цепи X. Суть предложенного решения состоит в организации альтернативного пути передачи сигнала синхронизации в каждой цепи. Проблемы могут возникнуть только при низкой надежности связи, обеспечивающей синхронизацию мастер-узлу C&D. В этом смысле для этого мастер-узла логично использовать локальный первичный эталон LPR.

Меры защиты кабелей от коррозии.

Коррозией называется разрушение поверхностей металлов вследствие электрохимических и химических процессов. В зависимости от условий протекания таких процессов коррозия может быть электрической, почвенной, межкристаллитной и атмосферной.

Электрическая коррозия возникает от прохождения по металлическим оболочкам кабелей блуждающих электрических токов, источниками которых могут быть рельсовые пути трамвайных и электрифицированных железных дорог, установки дистанционного питания и т.п. В электрических цепях трамвая и электрифицированных железных дорог в качестве обратного провода используются рельсовые пути и из-за значительного сопротивления рельсовых стыков, плохой изоляции их от земли, изменения направлений линий (путей) часть тока ответвляется в землю. При совпадении направления тока с проложенными в земле кабелями ток проникает в металлическую оболочку и проходит по ней до места ответвления к источникам (тяговым подстанциям). Место входа блуждающего тока в кабель называется катодной зоной, а место выхода — анодной. В анодной зоне ток уносит в землю мельчайшие частицы металла, разъедая оболочку.

Почвенная коррозия возникает при взаимодействии металла с окружающей средой (грунтом) и представляет собой электрохимическое разрушение металлических сооружений, вызванное действием почвы, грунта, почвенных и грунтовых вод и т.п. Содержание в грунте или почве минеральных солей, органических веществ, газов и влаги определяет их коррозионную активность. С повышением температуры скорость коррозии металла увеличивается.

Межкристаллитная коррозия возникает при вибрации кабелей на мостах и проездах с интенсивным движением, при длительной перевозке, в отдельных местах подвески и т.п. Разрушение оболочек кабелей в этом случае происходит преимущественно по границам кристаллов (зерен) металла и вызвано действием окружающей среды при переменных механических нагрузках или без них.

Атмосферная газовая коррозия, как правило, носит электрохимический характер и возникает при окислении металла, например, кислородом воздуха, при повышенной температуре.

Сооружения связи могут подвергаться всем видам коррозии, однако наибольшее распространение получила электрическая коррозия. Свинцовые оболочки кабелей подвержены разрушениям в анодных зонах, однако может наблюдаться и «катодная коррозия». Алюминиевые оболочки кабелей подвержены коррозии в равной степени в анодных, катодных и знакопеременных зонах. Стальные оболочки кабелей обычно разрушаются в вершинах гофр.

Для определения степени опасности коррозии и выбора средств защиты сооружений проводят исследования и электрические измерения. При защите кабелей от электрической коррозии проводят две группы мероприятий. Первая группа — мероприятия, способствующие уменьшению блуждающих токов в земле за счет увеличения переходного сопротивления между рельсами и землей, проводимости рельсовых путей, количества тяговых подстанций, количества и проводимости отсасывающих линий. Вторая группа — мероприятия, способствующие уменьшению блуждающих "токов в оболочках кабелей, их вредного влияния.

Наибольшее распространение получили способы защиты кабелей посредством электрических дренажей, катодных станций и протекторов. Электрические дренажи, действие которых заключаются в отводе блуждающих токов из защищаемых кабелей к источнику этих токов, могут быть прямыми, поляризованными и усиленными. В состав оборудования дренажей входят реле, реостаты, рубильники, трансформаторы, измерительные приборы, смонтированные в металлических шкафах. Выводные концы дренажей подключаются к кабелям и рельсам. Катодную защиту применяют тогда, когда невозможно или нецелесообразно использовать электрические дренажи. Принцип действия катодной защиты заключается в создании отрицательного потенциала на защищаемых кабелях за счет токов катодной станции. Катодная станция представляет собой встроенный выпрямитель, смонтированный в металлическом шкафу. Выводные концы ее подключаются к кабелям и к анодному заземлению, и защитный ток проходит от положительного полюса станции через анодное заземление на землю, затем на оболочку кабелей и на отрицательный полюс станции.

Для защиты кабелей от почвенной коррозии и (в определенных условиях) от электрокоррозии применяются протекторы — анодные электроды. Протектор представляет собой стержень из магниевого сплава, подключаемый к кабелю. Принцип действия протекторной защиты заключается в том, что при соединении протектора, имеющего более низкий потенциал по отношению к свинцу, со свинцовой оболочкой кабеля он окажется анодом, с которого ток будет стекать в землю. Свинцовая оболочка окажется под отрицательным потенциалом. Протекторы устанавливают непосредственно в грунт с любой стороны защищаемого кабеля, а в колодцах кабельной канализации — в днище или за стенкой.

Для повышения продольного электрического сопротивления металлических оболочек кабелей их секционируют изолирующими муфтами типа МИ, МИС или ГМСИ. Муфты устанавливают в местах пересечения линий электрифицированных железных дорог, входа в тоннели метрополитена, пересечения с другими металлическими сооружениями, где наблюдается вход или выход блуждающего тока в кабель.

Существуют и другие способы защиты кабелей, но они менее распространены. Защита кабелей может осуществляться комплексно с одновременным использованием дренажей, катодных станций и протекторов совместно с другими металлическими сооружениями (газопровод, водопровод, электрокабели и др).

Для измерения блуждающих токов на подземных междугородных линиях оборудуют контрольно-измерительные пункты (КИП), представляющие собой железобетонные столбики длиной 1200 мм, зарываемые в грунт на глубину 700 мм, на определенных расстояниях от трассы кабеля. В городских условиях измерение потенциала металлических оболочек кабелей производят в кабельных колодцах.

С целью выравнивания потенциала между оболочками проложенных в одном направлении кабелей их перепаивают поперечными отрезками свинцовой ленты в кабельных шахтах, шкафных и разветвительных колодцах, в колодцах при пересечении с рельсами электрифицированных дорог и через два-три колодца на прямолинейных участках трассы. Подземные кабели перепаивают отрезками кабеля ПРППМ 1X2X1,2, присоединяемыми к стальной броне.

Металлические цистерны НУП защищают в заводских условиях при их изготовлении и в процессе установки. Наружная стенка цистерны покрывается 3 — 4 слоями расплавленного битума, стеклотканью, битумом и крафт-бумагой или мелом.

 


Дата добавления: 2015-07-10; просмотров: 154 | Нарушение авторских прав






mybiblioteka.su - 2015-2024 год. (0.007 сек.)