Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Синтез гема

Читайте также:
  1. II. Генезис принципа бинера и его различные виды в разуме Природа частности. Угол зрения и уровень синтеза. О трех формах восприятия бинеров.
  2. III. Коррекционная работа при дисграфиях «анализа синтеза».
  3. Андрогены синтезируются в Тека-клетках и строме яичников
  4. Аркан 0, как учение о Вселенском Синтезе
  5. Афферентный синтез
  6. Бактеріальний фотосинтез
  7. Белоксинтезирующая система бактерий.

 

К настоящему времени почти полностью выяснены основные пути образования порфиринов и протопорфиринов, являющихся непосредственными предшественниками гема и хлорофилла. Благодаря исследованиям Д. Шемина и др. выяснены основные пути синтеза гема. С помощью меченых предшественников было показано, что в синтезе гема в бесклеточных экстрактах эритроцитов птиц специфическое участие принимают глицин, уксусная и янтарная кислоты. Источником всех 4 атомов и 8 атомов углерода тетрапиррольного кольца оказался глицин, а источником остальных 26 из 34 атомов углерода – янтарная кислота (сукцинат), точнее ее производное сукцинил-КоА. Последовательность химических реакций синтеза тетрапирролов в организме животных можно условно разделить на несколько стадий.

 

На I стадии, протекающей в 2 этапа, сукцинил-КоА взаимодействует с глицином с образованием d-аминолевулиновой кислоты (d-АЛК).

 
 

 

Эту стадию катализирует специфический пиридоксальфосфатзависимый фермент 8-аминолевулинатсинтаза – ключевой, аллостерический фермент синтеза тетрапирролов.

Впервые эта синтаза была обнаружена в эндоплазматической сети клеток печени. Фермент индуцируется стероидами и другими факторами и ингибируется по типу обратной связи конечным продуктом биосинтеза – гемом.

 

 
 

На II стадии происходит конденсация 2 молекул d-аминолевулиновой кислоты с образованием первого монопиррольного соединения – порфобилиногена (ПБГ).

 

Фермент, катализирующий эту стадию, - порфобилиногенсинтаза также является регуляторным ферментом, подвергаясь ингибированию конеч­ными продуктами синтеза. Предполагают, что механизм этой сложной реакции дегидратации включает образование кетиминной связи (шиффово основание) между кетогруппой одной молекулы d-аминолевулиновой кислоты и d-аминогруппой лизина молекулы фермента. В следующей многоступенчатой стадии, катализируемой соответствующими фермента­ми, из 4 монопиррольных молекул порфобилиногена синтезируется тетрапиррольный комплекс протопорфирин IX, являющийся непосредственным предшественником тема. Некоторые этапы сложного пути синтеза окон­чательно не установлены.

В заключительной стадии протопорфирин IX присоединяет молекулу железа при участии феррохелатазы (гемсинтазы), и образуется гем. Последний используется для биосинтеза всех гемсодержащих хромопротеинов.

Источником железа для этой реакции является ферритин, который считается резервным гемопротеином, откладывающимся в клетках костного мозга, печени и селезенки.

Имеются указания, что, помимо железа, в синтезе тема участвуют некоторые кофакторы, в частности витамин В12, ионы меди, хотя конкрет­ная их роль не раскрыта.

Таким образом, весь путь синтеза тема может быть представлен в виде схемы, в которой даны полные и сокращенные обозначения промежуточных метаболитов и ферментов.

 

Распад гемоглобина в тканях (образование желчных пигментов)

Продолжительность жизни эритроцитов составляет 120 дней, затем они разрушаются и освобождается гемоглобин. Главными органами, в которых происходят разрушение эритроцитов и распад гемоглобина, являются печень, селезенка и костный мозг, хотя в принципе оба процесса могут происходить и в клетках других органов. Распад гемоглобина в печени начинается с разрыва a-метиновой связи между I и II кольцами порфиринового кольца. Этот процесс катализируется НАДФ-содержащей оксидазой и приводит к образованию зеленого пигмента вердоглобина (холеглобина):


 

В приведенных структурных формулах здесь и далее в желчных пиг­ментах М-метильная СН3-группа, В - (—СН=СН2)-винильная группа и П-(—СН2—СН2—СООН) – остаток пропионовой кислоты.

 
 

Как видно из приведенных формул, в молекуле вердоглобина еще сохраняются атом железа и белковый компонент. Имеются экспериментальные доказательства, что в этом окислительном превращении гемоглобина принимают участие витамин С, ионы Fе2+ и другие кофакторы. Дальнейший распад вердоглобина, вероятнее всего, происходит спонтанно с освобождением железа, белка-глобина и образованием одного из желчных пигментов – биливердина. Спонтанный распад сопровождается перераспре­делением двойных связей и атомов водорода в пиррольных кольцах и метиновых мостиках. Образовавшийся биливердин ферментативным путем восстанавливается в печени в билирубин, являющийся основным желчным пигментом у человека и плотоядных животных:

 

Основное место образования билирубина – печень, селезенка и, по-видимому, эритроциты (при распаде их иногда разрывается одна из метиновых связей в протопорфирине). Образовавшийся во всех этих клетках билирубин поступает в печень, откуда вместе с желчью попадает в желчный пузырь. Билирубин, образовавшийся в клетках системы макрофагов, называется свободным, или непрямым, билирубином, поскольку вследствие плохой растворимости в воде он легко адсорбируется на белках плазмы крови и для его определения в крови необходимо предварительное осаждение белков спиртом. После этого билирубин всту­пает во взаимодействие с диазореактивом Эрлиха.

В крови взрослого здорового человека содержится относительно по­стоянное количество общего билирубина – от 4 до 26 мкмоль/л, в среднем 15 мкмоль/л. Около 75% этого количества приходится на долю непрямого билирубина. Повышение его концентрации в крови до 35 мкмоль/л при­водит к желтухе. Более высокий уровень билирубина в крови вызывает явления тяжелого отравления. Непрямой билирубин, поступая с током крови в печень, подвергается обезвреживанию путем связывания с глюкуроновой кислотой. В этом процессе принимают участие особый фермент УДФ-глюкуронилтрансфераза и УДФ-глюкуроновая кислота, являющаяся донором глюкуроновой кислоты. При этом к билирубину присоединяются 2 остатка глюкуроновой кислоты с образованием сравнительно индиф­ферентного комплекса – билирубин-диглюкуронида, хорошо растворимго в воде и дающего прямую реакцию с диазореактивом. В желчи всегда присутствует прямой билирубин. В крови количество прямого и непрямо билирубина, а также соотношение между ними резко меняются при поражениях печени, селезенки, костного мозга, болезнях крови и т.д., поэтому определение содержания обеих форм билирубина в крови имеет существенное значение при дифференциальной диагностике различных форм желтухи. При желчнокаменной болезни в составе желчных камней наряду с основным их компонентом – холестерином всегда обнаруживается непрямой били­рубин. Вследствие плохой растворимости в воде он выпадает в осадок в желчном пузыре в виде билирубината кальция, участвующего в фор­мировании камней.

Дальнейшая судьба желчных пигментов, точнее билирубина, связана с их превращениями в кишечнике под действием бактерий. Сначала глюкуроновая кислота отщепляется от комплекса с билирубином и осво­бодившийся билирубин подвергается восстановлению в стеркобилиноген, который выводится из кишечника. В сутки человек выделяет около 300 мг стеркобилиногена. Последний легко окисляется под действием света и воздуха в стеркобилин. Механизм бактериальных превращений билирубиза до стеркобилина до конца еще не расшифрован. Имеются данные, что промежуточными продуктами восстановления являются последовательно мезобилирубин и мезобилиноген (уробилиноген). После всасывания не­большая часть мезобилиногена поступает через воротную вену в печень, где подвергается разрушению с образованием моно- и дипиррольных соединений. Кроме того, очень небольшая часть стеркобилиногена после вса­сывания через систему геморроидальных вен попадает в большой круг кровообращения, минуя печень, и в таком виде выводится с мочей. Суточное содержание стеркобилиногена в моче составляет около 4 мг, и, пожалуй, именно стеркобилиноген является нормальной органической составной частью мочи. Если с мочой выделяется повышенное содержание уробилиногена (точнее, мезобилиногена), то это является свидетельством недостаточности функции печени, например, при печеночной или гемолитической желтухе, когда печень частично теряет способность извлекать этот пигмент из крови воротной вены. Химически уробилиноген (мезобилиноген) неидентичен стеркобилиногену (уробилиногену) мочи. Исчезно­вение стеркобилиногена (уробилиногена) из мочи при наличии билирубина и биливердина является свидетельством полного прекращения поступлении желчи в кишечник. Такое состояние часто наблюдается при закупорке протока желчного пузыря (желчнокаменная болезнь) или общего желчного протока (желчнокаменная болезнь, раковые поражения поджелудочной железы и др.).

Список использованной литературы

 

1. Конспект лекций.

2. Березов Т.Т., Коровкин Б.Ф., Биологическая химия, М. Медицина, 1998, стр. 503-508.

3. Николаев А.Я., Биологическая химия, М. Высшая школа, 1989.

 

 


Дата добавления: 2015-07-10; просмотров: 173 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Синопсис пилотной серии| Синтез гема

mybiblioteka.su - 2015-2024 год. (0.008 сек.)