Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Как работает спиновый транзистор

Читайте также:
  1. БОЛЬШОЙ ГРЕХ ДЕЛАЕТ ЧЕЛОВЕК, ЕСЛИ, ПОЛЬЗУЯСЬ ТРУДАМИ ЛЮДЕЙ, САМ НЕ РАБОТАЕТ
  2. В монастыре работает трапезная. Организована купель.
  3. Вэйвер испытывал сильные боли в животе, с того момента как он призвал Слугу. Он был уверен, что к тому времени как он заполучит Грааль, он заработает себе язву желудка.
  4. Глава двадцатая. ТЮБИК РАБОТАЕТ
  5. ЕСЛИ В НАСТОЯЩЕЕ ВРЕМЯ ВЫ НЕ РАБОТАЕТЕ, ТО ПРИ ОТВЕТАХ ПРЕДСТАВЬТЕ, КАК МОГЛО БЫ БЫТЬ В СИТУАЦИЯХ РАБОТЫ
  6. Если вы не работаете над собой - страдайте, это нормально!
  7. Если купишь раба еврея, пусть он работает шесть лет; а в седьмой пусть выйдет на волю даром.

Методика экспериментов, вкратце, такова. Вначале авторы изготовили слоистую структуру, составленную из слоя ферромагнетика, слоя чистого кремния, затем второго слоя ферромагнетика, но уже другого, и наконец, слоя кремния с примесями. К разным слоям этой структуры прикладывается специально подобранное напряжение, управляющее течением электронов. Поток электронов на входе неполяризован, но после прохождения ферромагнитной прослойки он приобретает поляризацию — то есть становится спиновым током. Эти электроны попадают в прослойку из чистого кремния, проходят достаточно большую дистанцию, затем попадают во второй ферромагнитный слой и выходят наружу.

Эксперименты показали, что при движении через кремний поляризация электронов частично сохраняется. Благодаря этому, изменяя взаимную ориентацию магнитных полей в двух слоях ферромагнетика, можно включать или выключать спиновый ток на выходе. Это позволяет для осуществления сверхбыстрых логических операций над информацией использовать два устойчивых состояния прибора, при которых ток либо есть (логическая «1»), либо нет (логический «0»), по аналогии с традиционным транзистором, для осуществления сверхбыстрых логических операций над информацией.

Вначале исследователи работали со слойками толщиной примерно 10 мкм, но в последней работе, опубликованной в Physical Review Letters, они увеличили промежуточный слой чистого кремния до 350 мкм — а это уже вполне макроскопический размер. Даже на таких больших расстояниях спиновый ток по-прежнему сохранялся. Таким образом, представленное устройство демонстрирует долгое время жизни спина электрона, за которое он способен преодолеть слой полупроводника толщиной до 350 мкм.

Вид транзистора, принцип действия и зонная диаграмма (диаграмма энергетических состояний барьеров, которые встречают электроны при прохождении через вещества) показаны на рис. 2.

Рис. 2. а — изображение кремниевого спинового транзистора, b — схема работы и c — зонная диаграмма его компонентов. При постоянном напряжении на эмиттере Ve измерялся «первый коллекторный ток» Ic1 на NiFe-контакте и «второй коллекторный ток» Ic2 на индиевом контакте, осажденном на кремниевой подложке n-типа. Рис. из обсуждаемой статьи в Phys. Rev. Lett.

На первом этапе при приложенном напряжении Ve неполяризованные электроны инжектируются из алюминиевого эмиттера (источника) в ферромагнитный слой Co84Fe16. Благодаря спин-зависимому рассеиванию электронов в магнитном слое, электроны с выделенным направлением спина (например, «спин-вниз») отсеиваются, так как направление намагниченности слоя Co84Fe16 не совпадает с направлением спинов. Отобранные электроны с однонаправленными спинами туннелируют через тонкий слой Al2O3. В данном случае туннельный барьер проходят только «горячие» электроны (с энергией, достаточно высокой для преодоления энергетических барьеров), создавая эмиттерный ток (ток источника). «Горячие» электроны нужны для увеличения эффективности прибора.

Рис. 3. Механизм работы инжектора и детектора.а — слои Co84Fe16 и Ni80Fe20 намагничены параллельно, b — антипараллельно (emmiter — источник тока, F — первый и второй ферромагнитные слои соответственно, silicon — кремниевая прослойка, collector — приемник спинового тока). Рис. с сайта noorderlicht.vpro.nl

Пройдя через барьер Шоттки (потенциальный барьер, возникающий на границе металл—полупроводник) в беспримесный монокристаллический слой кремния, электроны занимают свободные места в зоне проводимости полупроводника и, под действием приложенного к нему напряжения Vc1, начинают упорядоченное движение. При этом возникает коллекторный ток Ic1 (ток на детекторе). После прохождения через 350-микрометровый слой кремния спин-поляризованные электроны детектируются вторым спиновым транзистором. Ферромагнитный слой Ni80Fe20 регистрирует спины электронов, которые инжектируются в кремний n-типа (то есть кремний, основными носителями тока в котором являются электроны) для увеличения чувствительности детектора (в зоне проводимости кремния n-типа есть избыточные электроны, которые усиливают спиновый ток), создавая коллекторный ток Ic2. Спиновый ток зависит от относительной намагниченности обоих ферромагнитных слоев.

На рис. 3 показан механизм работы детектора. В случае параллельного направления намагниченностей в слоях Co84Fe16 и Ni80Fe20 (рис. 3а) ток выше, чем при антипараллельном направлении намагниченностей (рис. 3b). Первый режим функционирования детектора можно сравнить с футбольным матчем без вратаря: все мячи, посланные в сетку ворот, оборачиваются голом. Второму же режиму соответствует игра с очень хорошим голкипером, отражающим все летящие в ворота мячи.

Следует отметить, что при комнатной температуре транзистор всё же имеет не очень высокую эффективность работы. Хорошие результаты работы прибор показал при температуре –73°C (150 K). Так что исследователям еще нужно потрудиться над увеличением температурных интервалов функционирования транзистора. Авторы уверены, что с помощью их устройства вполне достижима стопроцентная спиновая поляризация, при которой все инжектированные электроны имеют ориентацию либо «спин-вверх», либо «спин-вниз». Высокая степень поляризация позволяет более точно определять величину спинового тока, избавляя логическое устройство (в данном случае подразумевается конечное устройство на базе массива из спиновых транзисторов) от ошибок при анализе и обработке информации.

Итак, создание революционного устройства — спинового транзистора на кремнии, способного перемещать спины с выделенным направлением на сотни микрометров в пространстве, — состоялось, ознаменовав тем самым старт для создания сверхбыстрой и низко энергопотребляющей электроники нового поколения. Это первое в мире спин-электронное устройство на кремнии, имеющее высокую степень спиновой поляризации при температуре, близкой к комнатной. По своей важности это событие может быть сравнимо с открытием классического полупроводникового транзистора шесть десятилетий назад. Нам остается только пожелать исследователям научных успехов и ждать появления электронной техники нового поколения.

 


Дата добавления: 2015-10-16; просмотров: 65 | Нарушение авторских прав


Читайте в этой же книге: Немного о спинтронике | Несмотря ни на что | Спинтроника — электроника нового поколения |
<== предыдущая страница | следующая страница ==>
Революция в спинтронике свершилась| ТОРЖЕСТВА

mybiblioteka.su - 2015-2024 год. (0.007 сек.)