Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Краткие теоретические сведения. АЦП, как правило, устанавливаются в цепях обратных связей цифровых систем управления

Читайте также:
  1. I Общие сведения
  2. I. Общие сведения
  3. I. Общие сведения
  4. II. Еще кое-какие сведения о госте мистера Хамфри
  5. II. СВЕДЕНИЯ О ВОИНСКОМ УЧЕТЕ
  6. III. Сведения о внешнеполитической и внешнеэкономической деятельности
  7. IV. Общие сведения о спортивном соревновании

АЦП, как правило, устанавливаются в цепях обратных связей цифровых систем управления для преобразования аналоговых сигналов обратных связей в коды, воспринимаемые цифровой частью системы. Т.о. АЦП выполняют несколько функций, таких как: временная дискретизация, квантование по уровню, кодирование. Обобщенная структурная схема АЦП представлена на рис.9.1.

Рисунок 9.1 Структурная схема АЦП

На вход АЦП подается сигнал в виде тока или напряжения, который в процессе преобразования квантуется по уровню. Идеальная статическая характеристика 3-разрядного АЦП приведена на рис.9.2.

Существуют различные методы аналого-цифрового преобразования, различающиеся между собой по точности и быстродействию. В настоящее время большое распространение получили такие типы преобразователей как АЦП последовательных приближений (поразрядного уравновешивания), интегрирующие АЦП, параллельные (Flash) АЦП, «сигма-дельта» АЦП и др.

 

Рисунок 9.2 Идеальная статическая характеристика 3-хразрядного АЦП

Рисунок 9.3 Структурная схема АЦП последовательных приближений

Основными элементами АЦП последовательных приближений (рис. 9.3) являются компаратор (К), цифро-аналоговый преобразователь (ЦАП) и схема логического управления. Принцип преобразования основан на последовательном сравнении уровня входного сигнала с уровнями сигналов соответствующих различным комбинациям выходного кода и формировании результирующего кода по результатам сравнений.

Рисунок 9.4 Структурная схема параллельного (Flash) АЦП

В схеме параллельного АЦП (рис. 9.4) входное напряжение подается для сравнения на одноименные входы сразу N-1 компараторов. На противоположные входы компараторов подаются сигналы с высокоточного делителя напряжения, который подключен к источнику опорного напряжения. При этом напряжения с выходов делителя равномерно распределены вдоль всего диапазона изменения входного сигнала. Шифратор с приоритетом формирует цифровой выходной сигнал, соответствующий самому старшему компаратору с активизированным выходным сигналом. Однако, при большой разрядности он требует больших аппаратных затрат.

Рисунок 9.5 Структурная схема АЦП двойного интегрирования

Основными элементами схемы АЦП двойного интегрирования (рис. 9.5) являются аналоговый коммутатор, состоящий из ключей SW1, SW2, SW3, интегратор И, компаратор К и счетчик С. С помощью данного метода можно добиться очень хорошей точности не предъявляя высоких требований к точности и стабильности компонентов. Жесткие требования предъявляются только к току разряда, т.е. к источнику опорного напряжения. Недостатком такого способа преобразования является невысокое быстродействие.

АЦП характеризуются рядом параметров, позволяющих реализовать выбор конкретного устройства исходя из требований, предъявляемых к системе. Все параметры АЦП можно разделить на две группы: статические и динамические. Первые определяют точностные характеристики устройства при работе с неизменяющимся либо медленно изменяющимся входным сигналом, а вторые характеризуют быстродействие устройства как сохранение точности при увеличении частоты входного сигнала.

Коэффициентом преобразования АЦП называется тангенс угла наклона прямой, проведенной через начальную и конечную точки реальной характеристики преобразования. Разность между действительным и идеальным значением коэффициента преобразования называется ошибкой коэффициента преобразования (Gain Error).

Из-за не идеальности элементов схемы АЦП ступеньки в различных точках характеристики АЦП отличаются друг от друга по величине и не равны ULSB (рис.9.6).

Отклонение расстояния между серединами двух соседних реальных шагов квантования от идеального значения шага квантования ULSB называется дифференциальной нелинейностью (DNL – Differential Nonlinearity). Если DNL больше или равна ULSB, то у АЦП могут появиться так называемые “пропущенные коды”

Разрешающей способностью АЦП (Resolution) называется величина, обратная максимальному числу кодовых комбинаций на выходе АЦП

,

где N – разрядность кода

 

 

Рисунок 9.6 Характеристика преобразования АЦП с неидеальными элементами

Этот параметр определяет какой минимальный уровень входного сигнала (относительно сигнала полной амплитуды) способен воспринимать АЦП.

Точность и разрешающая способность – две независимые характеристики. Разрешающая способность играет определяющую роль тогда, когда важно обеспечить заданный динамический диапазон входного сигнала. Точность является определяющей, когда требуется поддерживать регулируемую величину на заданном уровне с фиксированной точностью.

Динамическим диапазоном АЦП (DR - Dinamic Range) называется отношение максимального воспринимаемого уровня входного напряжения к минимальному, выраженное в дБ

Этот параметр определяет максимальное количество информации, которое способен передавать АЦП. Так, для 12-разрядного АЦП DR=72 дБ.

Характеристики реальных АЦП отличаются от характеристик идеальных устройств из-за неидеальности элементов реального устройства. Рассмотрим некоторые параметры, характеризующие реальные АЦП.

Отношением сигнал-шум (SNR – Signal to Noise Ratio) называется отношение среднеквадратического значения входного синусоидального сигнала к среднеквадратическому значению шума, который определяется как сумма всех остальных спектральных компонент вплоть до половины частоты дискретизации, без учета постоянной составляющей.

Значение реального SNR может быть использовано для определения эффективного количества разрядов АЦП (ENOB – Effective Number of Bits). Этот показатель может характеризовать действительную решающую способность реального АЦП. Так, 12-разрядный АЦП, у которого SNR=68 дБ для сигнала с КОС=-20 дБ является на самом деле 7-разрядным (ENOB=7.68). Значение ENOB сильно зависит от частоты входного сигнала, т.е. эффективная разрядность АЦП падает с увеличением частоты.

Суммарный коэффициент гармоник (THD – Total Harmonic Distortion) – это отношение суммы среднеквадратических значений всех высших гармоник к среднеквадратическому значению основной гармоники

,

где n обычно ограничивают на уровне 6 или 9.

Этот параметр характеризует уровень гармонических искажений выходного сигнала АЦП по сравнения с входным. THD возрастает с частотой входного сигнала.

Полоса частот полной мощности (FPBW – Full Power Bandwidth) – это максимальная частота входного сигнала с размахом, равным полной шкале, при которой амплитуда восстановленной основной составляющей уменьшается не более чем на 3 дБ. С ростом частоты входного сигнала аналоговые цепи АЦП перестают успевать отрабатывать его изменения с заданной точностью, что приводит к уменьшению коэффициента преобразования АЦП на высоких частотах.

Время установления (Settling Time) – это время, необходимое АЦП для достижения номинальной точности после того, как на ее вход был подан ступенчатый сигнал с амплитудой, равной полному диапазону входного сигнала. Этот параметр ограничен из-за конечного быстродействия различных узлов АЦП.

Любой способ аналого-цифрового преобразования требует некоторого конечного времени для его выполнения. Под временем преобразования АЦП (Conversion Time) понимается интервал времени от момента поступления аналогового сигнала на вход АЦП до момента появления соответствующего выходного кода. Если входной сигнал АЦП изменяется во времени, то конечное время преобразования АЦП приводит к появлению т.н. аппертурной погрешности (рис.3.10).

 


Дата добавления: 2015-09-03; просмотров: 72 | Нарушение авторских прав


Читайте в этой же книге: ВВЕДЕНИЕ | ТЕХНИКА БЕЗОПАСНОСТИ | Краткие теоретические сведения | Краткие теоретические сведения | Порядок выполнения работы | Краткие теоретические сведения | Краткие теоретические сведения | Краткие теоретические сведения | Порядок выполнения работы | Краткие теоретические сведения |
<== предыдущая страница | следующая страница ==>
Краткие теоретические сведения| Краткие теоретические сведения

mybiblioteka.su - 2015-2024 год. (0.008 сек.)