Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Управляемый термоядерный синтез

Читайте также:
  1. Абсолютного синтеза
  2. Джон Хаул и "яма с тиграми" под синтезом Самости
  3. Естетична програма модерну: синтез способу життя та мистецьких парадигм
  4. Загальна характеристика процесу біосинтезу білка.
  5. Земля как управляемый космический корабль
  6. І. ОРГАНИКАЛЫҚ СИНТЕЗ
  7. Йога синтеза

Управляемый термоядерный синтез (УТС) — синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерных взрывных устройствах), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий и тритий.

Реакция синтеза заключается в следующем: два или больше атомных ядра в результате применения некоторой силы сближаются настолько, чтобы силы, действующие на таких расстояниях, преобладали над силами кулоновского отталкивания между одинаково заряженными ядрами, в результате чего формируется новое ядро. При создании нового ядра выделится большая энергия сильного взаимодействия. По известной формуле E=mc², высвободив энергию, система нуклонов потеряет часть своей массы. Атомные ядра, имеющие небольшой электрический заряд, проще свести на нужное расстояние, поэтому тяжелые изотопы водорода являются одними из лучших видов топлива для реакции синтеза.

Установлено, что смесь двух изотопов, дейтерия и трития, требует менее всего энергии для реакции синтеза по сравнению с энергией, выделяемой во время реакции. Однако, хотя смесь дейтерия и трития (D-T) является предметом большинства исследований синтеза, она в любом случае не является единственным видом потенциального горючего. Другие смеси могут быть проще в производстве; их реакция может надежнее контролироваться, или, что более важно, производить меньше нейтронов. Особенный интерес вызывают так называемые «безнейтронные» реакции, поскольку успешное промышленное использование такого горючего будет означать отсутствие долговременного радиоактивного загрязнения материалов и конструкции реактора, что, в свою очередь, могло бы положительно повлиять на общественное мнение и на общую стоимость эксплуатации реактора, существенно уменьшив затраты на вывод из эксплуатации и утилизацию. Проблемой остается то, что реакцию синтеза с использованием альтернативных видов горючего намного сложнее поддерживать, потому D-T реакция считается только необходимым первым шагом. Управляемый термоядерный синтез может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива.

Управляемый термоядерный синтез возможен при одновременном выполнении двух условий:

T > 108 K (для реакции D-T).

n τ > 1014 см−3·с (для реакции D-T),

где n - плотность высокотемпературной плазмы, τ - время удержания плазмы в системе.

От значения этих двух критериев в основном зависит скорость протекания той или иной термоядерной реакции.

 

 

Токама́к (тороидальная камера с магнитными катушками) - тороидальная установка для магнитного удержания плазмы с целью достижения условий, необходимых для протекания управляемого термоядерного синтеза. Плазма в токамаке удерживается не стенками камеры, которые не способны выдержать необходимую для термоядерных реакций температуру, а специально создаваемым комбинированным магнитным полем - тороидальным внешним и полоидальным полем тока, протекающего по плазменному шнуру. По сравнению с другими установками, использующими магнитное поле для удержания плазмы, использование электрического тока является главной особенностью токамака. Ток в плазме обеспечивает разогрев плазмы и удержание равновесия плазменного шнура в вакуумной камере.

Токамак представляет собой тороидальную вакуумную камеру, на которую намотаны катушки для создания тороидального магнитного поля. Из вакуумной камеры сначала откачивают воздух, а затем заполняют её смесью дейтерия и трития. Затем с помощью индуктора в камере создают вихревое электрическое поле. Индуктор представляет собой первичную обмотку большого трансформатора, в котором камера токамака является вторичной обмоткой. Электрическое поле вызывает протекание тока и зажигание в камере плазмы. Протекающий через плазму ток выполняет две задачи:

- нагревает плазму так же, как нагревал бы любой другой проводник (омический нагрев);

- создает вокруг себя магнитное поле. Это магнитное поле называется полоидальным (то есть направленное вдоль линий, проходящих через полюсы сферической системы координат).

Магнитное поле сжимает протекающий через плазму ток. В результате образуется конфигурация, в которой винтовые магнитные силовые линии «обвивают» плазменный шнур. При этом шаг при вращении в тороидальном направлении не совпадает с шагом в полоидальном направлении. Магнитные линии оказываются незамкнутыми, они бесконечно много раз закручиваются вокруг тора, образуя так называемые «магнитные поверхности» тороидальной формы.

Наличие полоидального поля необходимо для стабильного удержания плазмы в такой системе. Так как оно создается за счёт увеличения тока в индукторе, а он не может быть бесконечным, время стабильного существования плазмы в классическом токамаке ограничено. Для преодоления этого ограничения разработаны дополнительные способы поддержания тока. Для этого может быть использована инжекция в плазму ускоренных нейтральных атомов дейтерия или трития или микроволновое излучение.

Кроме тороидальных катушек для управления плазменным шнуром необходимы дополнительные катушки полоидального поля. Они представляют собой кольцевые витки вокруг вертикальной оси камеры токамака.

Одного только нагрева за счет протекания тока недостаточно для нагрева плазмы до температуры, необходимой для осуществления термоядерной реакции. Для дополнительного нагрева используется микроволновое излучение на так называемых резонансных частотах (например, совпадающих с циклотронной частотой либо электронов, либо ионов) или инжекция быстрых нейтральных атомов.

 

 

 


Дата добавления: 2015-09-03; просмотров: 108 | Нарушение авторских прав


Читайте в этой же книге: Магнитогидродинамический генератор | Электростанции с магнитогидродинамическими генераторами. | Термоэмисионный генератор | Классификация термоэмиссионных преобразователей |
<== предыдущая страница | следующая страница ==>
ТЭП на цезии| Сцена 1. Верона. Площадь.

mybiblioteka.su - 2015-2024 год. (0.008 сек.)