Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Первый замечательный предел

Читайте также:
  1. Awareness – первый опыт
  2. I Предопределение
  3. I РЕЖИМЫ ВКЛЮЧЕНИЯ ВОЗДУХОРАСПРЕДЕЛИТЕЛЕЙ НА ЛОКОМОТИВАХ
  4. I-7000 : устройства удаленного и распределенного сбора данных и управления
  5. I. ОПРЕДЕЛЕНИЕ НЕКОТОРЫХ ОСНОВНЫХ ТЕРМИНОВ И ПОНЯТИЙ
  6. I. Самоопределение к деятельности
  7. I.1. Определение границ пашни

Первым замечательным пределом называется предел

Теорема 2.14 Первый замечательный предел равен

Доказательство. Рассмотрим два односторонних предела и и докажем, что каждый из них равен 1. Тогда по теореме 2.1 двусторонний предел также будет равняться 1.

Итак, пусть (этот интервал -- одно из окончаний базы ). В тригонометрическом круге (радиуса ) с центром построим центральный угол, равный , и проведём вертикальную касательную в точке пересечения горизонтальной оси с окружностью (). Обозначим точку пересечения луча с углом наклона с окружностью буквой , а с вертикальной касательной -- буквой ; через обозначим проекцию точки на горизонтальную ось.

Пусть -- площадь треугольника , -- площадь кругового сектора , а -- площадь треугольника . Тогда очевидно следующее неравенство:

Заметим, что горизонтальная координата точки равна , а вертикальная -- (это высота треугольника ), так что . Площадь центрального сектора круга радиуса с центральным углом равна , так что . Из треугольника находим, что . Поэтому Неравенство, связывающее площади трёх фигур, можно теперь записать в виде

Все три части этого неравенства положительны, поэтому его можно записать так:

или (умножив на ) так:

Предел постоянной 1 в правой части неравенства, очевидно, равен 1. Если мы покажем, что при предел в левой части неравенства тоже равен 1, то по теореме "о двух милиционерах" предел средней части также будет равен 1.

Итак, осталось доказать, что . Сперва заметим, что , так как равняется длине дуги окружности , которая, очевидно, длиннее хорды . Применяя теорему "о двух милиционерах" к неравенству

при , получаем, что

(2.3)

Простая замена переменной показывает, что и . Теперь заметим, что . Применяя теоремы о линейности предела и о пределе произведения, получаем:

(2.4)

Тем самым показано, что

Сделаем теперь замену ; при этом база перейдёт в базу (что означает, что если , то ). Значит, но ( -- нечётная функция), и поэтому

Мы показали, что левосторонний предел также равен 1, что и завершает доказательство теоремы.

Доказанная теорема означает, что график функции выглядит так:

Рис.2.28.График


Дата добавления: 2015-07-20; просмотров: 118 | Нарушение авторских прав


Читайте в этой же книге: Обратная матрица, вычисление, приложение. | Теорема о существовании и единственности обратной матрицы. | Метод Гаусса решения систем линейных уравнений | Теорема 1 (о нетривиальных решениях однородной системы) | Скалярное произведение векторов, свойства, приложения. | Смешанное произведение векторов | Вывести параметрическое и каноническое уравнение прямой на плоскости. | Общее уравнение плоскости вывод исследование | Эллипс, гипербола парабола. Каноническое уравнение. | Каноническое и общее уравнение прямой в пространстве |
<== предыдущая страница | следующая страница ==>
Цилиндрические и канонические поверхности| Сравнение бесконечно малых функция и свойства эквивалентных

mybiblioteka.su - 2015-2024 год. (0.008 сек.)