Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Получение меди.

Читайте также:
  1. ВОЗМОЖНО ПОЛУЧЕНИЕ КНИГИ СО СКЛАДА В МОСКВЕ И ДОСТАВКА В РЕГИОНЫ
  2. Глава 26. ГАРАНТИИ И КОМПЕНСАЦИИ РАБОТНИКАМ, СОВМЕЩАЮЩИМ РАБОТУ С ПОЛУЧЕНИЕМ ОБРАЗОВАНИЯ
  3. Дарение — получение
  4. Категории студентов, имеющие право на получение материальной помощи
  5. Коносамент - это документ стандартной формы, принятой в международной практике на перевозку груза, который удостоверяет его погрузку, перевозку и право на получение.
  6. Кто имеет право на получение листка нетрудоспособности.
  7. Получение антибиотиков.

Его можно упрощенно представить следующим образом: вначале сульфид меди (например, Cu2S) подвергают окислительному обжигу:
Cu2S + 202 =2CuO+S02
К образовавшемуся оксиду, меди (II) добавляют новую порцию сульфида. При
высокой температуре протекает реакция:
2CuO + Cu2S = 4 Сu + S02

Одна из важнейших отраслей применения меди - электротехническая промышленность. Из меди изготавливают электрические провода. Для этой цели металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Присутствие в меди 0,02% алюминия снизит ее электрическую проводимость почти на 10%. Еще более резко возрастает. сопротивление металла в присутствии неметаллических примесей. Для получения чистой меди, которую можно использовать в электротехнике, проводят ее электрорафинирование. Этот метод основан на проведении электролиза водного раствора соли меди с растворимым медным анодную или черновую, медь, которая служит одним из электродов, погружают ванну, заполненную водным раствором сульфата меди. В ванну погружают еще один электрод. К электродам подключают источник постоянного тока таким образом, чтобы техническая медь стала анодом (положительный полюс источника тока), электрод - катодом. На аноде идет реакция окисления металла:

анод (+) Сu (техн.)-2e=Сu2+ + примеси

Ионы меди переходят в раствор и перемещаются к катоду (отрицательно заряженному электроду). Нерастворимые примеси собираются вблизи анода, некоторые примеси могут переходить в раствор. На катоде протекает процесс восстановления ионов меди:

катод (-) Сu2 + + 2е=Сu

Условия электролиза таковы, что примеси, находящиеся в растворе, не восстанавливаются. Электрорафинированием получают Н электролитическую медь чистотой 99,999%, что вполне достаточно для нужд электротехники.Очень важная область применения меди-производство медных сплавов. Со многими металлами медь образует так называемые твердые растворы, которые похожи на обычные растворы тем, что в них атомы одного компонента (металла) равномерно распределены среди атомов другого. Большинство сплавов меди-это твердые растворы.

 

Сплав меди, известный с древнейших времен,-бронза содержит 4-30% олова (обычно 8-10%). Интересно, что бронза по своей твердости превосходит отдельно взятые чистые медь и олово.

 

Бронза

 

Бронза более легкоплавка по сравнению с медью. До наших дней сохранились изделия из бронзы мастеров Древнего Египта, Греции, Китая. Из бронзы отливали в средние века орудия и многие другие изделия. Знаменитые Царь-пушка и Царь-колокол в Московском Кремле также отлиты из сплава меди с оловом.

В настоящее время в бронзах олово часто заменяют другими металлами, что приводит к изменению их свойств. Алюминиевые бронзы, которые содержат 5-10% алюминия, обладают повышенной прочностью. Из такой бронзы чеканят медные монеты. Очень прочные, твердые и упругие бериллиевые бронзы содержат примерно 2% бериллия. Пружины, изготовленные из бериллиевой бронзы, практически вечные. Широкое применение в народном хозяйстве нашли бронзы, изготовленные на основе других металлов: свинца, марганца, сурьмы, железа, никеля и кремния.

Большую группу составляют медно-никелевые сплавы. Эти сплавы имеют серебристо-белый цвет, несмотря на то что преобладающим компонентом является медь. Сплав мельхиор содержит от 18 до 33% никеля (остальное медь). Он имеет красивый внешний вид. Из мельхиора изготавливают посуду и украшения, чеканят монеты («серебро»). Похожий на мельхиор сплав - нейзильбер-содержит кроме 15% никеля, до 20% цинка. Этот сплав используют для изготовления художественных изделий, медицинского инструмента.

Медно-никелевые сплавы константан (40% никеля) и манганин (сплав меди, никеля и марганца) обладают очень высоким электрическим сопротивлением. Их используют в производстве элект­роизмерительных приборов. Характерная особенность всех медно-никелевых сплавов-их высокая стойкость к процессам коррозии - они почти не подвергаются разрушению даже в морской воде.

Сплавы меди с цинком с содержанием цинка до 50% носят название латунь. Это дешевые сплавы, обладают хорошими механическими свойствами, легко обрабатываются. Латуни благодаря своим качествам нашли широкое применение в машиностроении, химической промышленности, в производстве бытовых товаров. Для придания латуням особых свойств в них часто добавляют алюминий, никель, кремний, марганец и другие металлы.

Из латуней изготавливают трубы для радиаторов автомашин, трубопроводы, патронные гильзы, памятные медали, а также части технологических аппаратов для получения различных веществ.

В технике применяют процессы меднения - покрытие стальных изделий тонким слоем меди. Зачем это делается? Стальные детали и изделия часто покрывают защитно-декоративными хромовыми и никелевыми покрытиями. Такое покрытие, нанесенное непосредственно на сталь, непрочно: оно растрескивается и отпадает. Если сталь покрыть тонким слоем меди, а затем хромом или никелем, то электролитические осадки получаются высокого качества. Меднение проводят также для облегчения спаивания деталей - медь очень хорошо подвергается пайке.

Еще одна важная отрасль, где медь используется электрохимиками, - гальванопластика. Этот метод получения точных Металлических копий был предложен в 1837 г. российским академиком Б. С. Якоби. Сущность метода состоит в следующем. Вначале изготавливается исходная форма или берется предмет, подлежащий копированию. Они могут быть выполнены из гипса, пластмассы, воска,.металлов и других материалов.

Если форма сделана не из металла, то на нее наносят токопроводящий слой: чаще всего напыляют тонкий слой графита. Затем проводят электролиз раствора, содержащего соли меди, причем форма с напыленным то-копроводящим слоем играет роль катода. На слое графита оседает металлическая медь. Таким образом получается копия, которая может быть использована для изготовления (например, методом литья) изделий, имеющих такую же форму, как и исходный предмет. В настоящее время методом гальванопластики изготовляют инструменты, грампластинки и т.д.

Соли меди (II) имеют широкое применение. Особенно важное значение имеет медный купорос-кристаллогидрат сульфата меди (II) CuS04 • 5 Н20. Медный купорос используют в производстве минеральных и органических красителей, в медицинской промышленности, для пропитки древесины в качестве антисептика (предохраняет дерево от гниения). Большое значение имеет медный купорос в сельском хозяйстве: им протравливают семена перед посевом, опрыскивают деревья и кустарники для борьбы с вредителями.

Соединения меди обладают высокой биологической активностью. Они содержатся в животных и растительных организмах. В растениях медь участвует в процессах синтеза хлорофилла, поэтому она входит в качестве одного из компонентов в состав минеральных удобрений. Медь встречается в составе многих продуктов, которые использует в пищу человек: много меди, например, в молоке. Употребление продуктов с пониженным содержанием меди может привести к различным заболеваниям, в частности, может ухудшиться состав крови. Однако избыток соединений меди также вреден, он может привести к тяжелым отравлениям. Вот почему не рекомендуется пользоваться при приготовлении пищи медной посудой: при кипячении в раствор может перейти избыточное количество меди. Можно лишь использовать медную посуду, хорошо облуженную изнутри, т.е. покрытую слоем олова.

Еще в 3 веке до Рождества Христова, наши предки начали широко применять в своей хозяйственной деятельности металлы. Переход от каменных орудий к металлическим имело колоссальное значение в истории человечества. Пожалуй, никакое другое открытие не привело к таким значительным общественным сдвигам.

Первым металлом, получившим широкое распространение, была медь. Постоянно разыскивая необходимые им камни, наши предки, надо думать, уже в древности обратили внимание на красновато-зеленые или зеленовато-серые куски самородной меди. В обрывах берегов и скал им попадались медный колчедан, медный блеск и красная медная руда (куприт). Поначалу люди использовали их как обыкновенные камни и обрабатывали соответствующим способом.

Вскоре они открыли, что при обработке меди ударами каменного молотка ее твердость значительно возрастает и она делается пригодной для изготовления инструментов.

Таким образом вошли в употребление приемы холодной обработки металла или примитивной ковки. Затем было сделано другое важное открытие — кусок самородной меди или поверхностной породы, содержавшей металл, попадая в огонь костра, обнаруживал новые, несвойственные камню особенности: от сильного нагрева металл расплавлялся и, остывая, приобретал новую форму.

Если форму делали искусственно, то получалось необходимое человеку изделие. Это свойство меди древние мастера использовали сначала для отливки украшений, а потом и для производства медных орудий труда. Так зародилась металлургия. Плавку стали осуществлять в специальных высокотемпературных печах, представлявших собой несколько измененную конструкцию хорошо известных людям гончарных печей.

Вообще говоря, медь — мягкий металл, сильно уступающий в твердости камню. Но медные инструменты можно было быстро и легко затачивать. (По наблюдениям С.А. Семенова, при замене каменного топора на медный скорость рубки увеличивалась примерно в три раза.) Спрос на металлические инструменты стал быстро расти. Люди начали настоящую "охоту" за медной рудой.

Оказалось, что она встречается далеко не везде. В тех местах, где обнаруживались богатые залежи меди, возникала их интенсивная разработка, появлялось рудное и шахтное дело. Как показывают открытия археологов, уже в древности процесс добычи руды был поставлен с большим размахом.
Например, вблизи Зальцбурга, где добыча меди началась около1600 году до Р.Х., шахты достигали глубины 100 м, а общая длина отходящих от каждой шахты штреков составляла несколько километров.
Бронзовый котел с приклепанными ручками и приваренными отлитыми ножками.
В конце 3 веке до Рождества Христова, древние мастера начали и с пользовать свойства сплавов, первым из которых стала бронза. На открытие бронзы людей должна была натолкнуть случайность, неизбежная при массовом производстве меди. Некоторые сорта медных руд содержат незначительную, до 2%, примесь олова. Выплавляя такую руду, мастера заметили, что медь, полученная из нее, намного тверже обычной. Оловянная руда могла попасть в медеплавильные печи и по другой причине.

Как бы то ни было, наблюдения за свойствами руд привели к освоению значения олова, которое и стали добавлять к меди, образуя искусственный сплав — бронзу. При нагревании с оловом медь плавилась лучше и легче подвергалась отливке, так как становилась более текучей. Бронзовые инструменты были тверже медных, хорошо и легко затачивались. Металлургия бронзы позволила в несколько раз повысить производительность труда во всех отраслях человеческой деятельности.
Само производство инструментов намного упростилось: вместо того, чтобы долгим и упорным трудом оббивать и шлифовать камень, люди наполняли готовые формы жидким металлом и получали результаты, которые и во сне не снились их предшественникам. Техника литья постепенно совершенствовалась.
Сначала отливку производили в открытых глиняных или песчаных формах, представлявших собой просто углубление. Их сменили открытые формы, вырезанные из камня, которые можно было использовать многократно. Однако большим недостатком открытых форм было то, что в них получались только плоские изделия.
Для отливки изделий из бронзы, сложной формы они не годились. Выход был найден, когда изобрели закрытые разъемные формы. Перед литьем две половинки формы крепко соединялись между собой. Затем через отверстие заливалась расплавленная бронза. Когда металл остывал и затвердевал, форму разбирали и получали готовое изделие. Такой способ позволял отливать изделия сложной формы, но он не годился для фигурного литья.
Но и это затруднение было преодолено, когда изобрели закрытую форму. При этом способе литья сначала лепилась из воска точная модель будущего изделия. Затем ее обмазывали глиной и обжигали в печи. Воск плавился и испарялся, а глина принимала точный слепок модели. В образовавшуюся таким образом пустоту заливали бронзу. Когда она остывала, форму разбивали.
Благодаря всем этим операциям мастера получили возможность отливать даже пустотелые предметы очень сложной формы. Постепенно были открыты новые технические приемы работы с металлами, такие как волочение, клепка, пайка и сварка, дополнявшие уже известные ковку и литье.
С развитием металлургии бронзовые изделия, повсюду стала вытеснять каменные. Но не нужно думать, что это произошло очень быстро. Руды цветных металлов имелись далеко не везде. Причем олово встречалось гораздо реже, чем медь. Металлы приходилось транспортировать на далекие расстояния. Стоимость металлических инструментов оставалась высокой.

Все это мешало их широкому распространению. Бронза не могла до конца заменить каменные инструменты. Это оказалось под силу только железу.

 

Железо.

История производства и использования железа берет свое начало в доисторической эпохе, скорее всего, с использования метеоритного железа. Выплавка в сыродутной печи применялась в 12 веке до н. э. в Индии, Анатолии и на Кавказе. Также отмечается использование железа при выплавке и изготовлении орудий и инструментов в 1200 году до н. э. в Африке южнее Сахары. Уже в первом тысячелетии до н. э. использовалось кованое железо.

Железо — химический элемент с атомным номером 26 в периодической системе, обозначается символом Fe (лат. Ferrum), один из самых распространённых в земной коре металлов. Простое вещество железо — серебристо-белый, ковкий металл с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. Железо редко встречается в природе в чистом виде. Часто используется человеком для создания сплавов с другими металлами и с углеродом, является основным компонентом стали. Распространённость железа в земной коре (4,65%, 4-е место после O, Si, Al[1]) и совокупность специфических свойств делают его «металлом №1» по важности для человека. Считается также, что железо составляет большую часть земного ядра.

Имеется несколько версий происхождения славянского слова «железо» (белор. жалеза,болг. желязо, укр. залізо, польск. Żelazo, словен. Železo). Одна из версий связывает это слово с санскритским «жальжа», что означает «металл, руда». Другая версия усматривает в слове славянский корень «лез», тот же, что и в слове «лезвие» (так как железо в основном употреблялось на изготовление оружия). Есть также связь между словом "желе" и студнеобразной консистенцией "болотной руды", из которой некоторое время добывался металл. Название природного карбоната железа (сидерита) происходит от лат. sidereus — звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно. В частности древнегреческое слово сидерос для железа и латинское sidus, означающее «звезда», вероятно, имеют общее происхождение.

По распространенности в литосфере железо находится на 4-м месте среди всех элементов и на 2-м месте после алюминия среди металлов. Его процентное содержание по массе в земной коре составляет 4,65 %. Железо входит в состав более 300-х минералов, но промышленное значение имеют только руды с содержанием не менее 16% железа: магнетит (магнитный железняк) - Fe3O4 (72,4% Fe), гематит (железный блеск или красный железняк) - Fe2O3 (70% Fe), бурые железняки (гётит, лимонит и т.п.) с содержанием железа до 66,1% Fe, но чаще 30-55%.

Железо давно и повсеместно применяется в технике, причем не столько в силу своего широкого распространения в природе, сколько в силу своих свойств: оно пластично, легко поддается горячей и холодной ковке, штамповке и волочению. Однако чистое железо обладает низкой прочностью и химической стойкостью (на воздухе в присутствии влаги окисляется, покрываясь нерастворимой рыхлой ржавчиной бурого цвета). В силу этого в чистом виде железо практически не применяется. То, что мы в быту привыкли называть "железом" и "железными" изделиями на самом деле изготовлено из чугуна и стали - сплавов железа с углеродом, иногда с добавлением других так называемых легирующих элементов, придающих этим сплавам особые свойства.

Было время, когда железо на земле ценилось значительно дороже золота. 1: 160: 1280: 6400. Это соотношение стоимостей меди, серебра, золота и железа у древних хеттов. Как свидетельствует в «Одиссее» Гомер, победителя игр, устроенных Ахиллесом, награждали куском золота и куском железа.
Железо было в равной степени необходимо и воину, и пахарю, а практическая потребность, как известно, – лучший двигатель производства и технического прогресса. Термин «железный век» введен в науку в середине XIX в. датским археологом К.Ю. Томсеном. «Официальные» границы этого периода человеческой истории: от IX...VII вв. до н.э. когда у многих народов и племен Европы и Азии начала развиваться металлургия железа, и до времени возникновения у этих племен классового общества и государства. Но если эпохи называть по главному материалу орудий труда, то, очевидно, железный век продолжается и сегодня.

Как получали железо наши далекие предки? Сначала так называемым сыродутным методом. Сыродутные печи устраивали прямо на земле, обычно на склонах оврагов и канав. Они имели вид трубы. Эту трубу заполняли древесным углем и железной рудой. Уголь зажигали, и ветер, дувший в склон оврага, поддерживал горение угля. Железная руда восстанавливалась, и получалась мягкая крица – железо с включениями шлака. Такое железо называлось сварочным; в нем содержалось немного углерода и примесей, перешедших из руды. Крицу ковали. Куски шлака отваливались, и под молотом оставалось железо, пронизанное шлаковыми нитями. Из него отковывали различные орудия. Век сварочного железа был долгим, однако людям древности и раннего средневековья было знакомо и другое железо. Знаменитую дамасскую сталь (или булат) делали на Востоке еще во времена Аристотеля (IV в. до н.э.). Но технология ее производства, так же как процесс изготовления булатных клинков, держалась в секрете.

И булат, и дамасская сталь по химическому составу не отличаются от обычной нелегированной стали. Это сплавы железа с углеродом. Но в отличие от обычной углеродистой стали булат обладает очень большой твердостью и упругостью, а также способностью давать лезвие исключительной остроты.
Секрет булата не давал покоя металлургам многих веков и стран. Каких только способов и рецептов не предлагалось! В железо добавляли золото, серебро, драгоценные камни, слоновую кость. Придумывались хитроумнейшие (и порой ужаснейшие) «технологии». Один из древнейших советов: для закалки погружать клинок не в воду, а в тело мускулистого раба, – чтобы его сила перешла в сталь.

Раскрыть секрет булата удалось в первой половине прошлого века замечательному русскому металлургу П.П. Аносову. Он брал самое чистое кричное железо и помещал его в открытом тигле в горн с древесным углем. Железо, плавясь, насыщалось углеродом, покрывалось шлаком из кристаллического доломита, иногда с добавкой чистой железной окалины. Под этим шлаком оно очень интенсивно освобождалось от кислорода, серы, фосфора и кремния. Но это было только полдела. Нужно было еще охладить сталь как можно спокойнее и медленнее, чтобы в процессе кристаллизации сначала могли образоваться крупные кристаллы разветвленной структуры – так называемые дендриты. Охлаждение шло прямо в горне, заполненном раскаленным углем. Затем следовала искусная ковка, которая ни должна была нарушить образовавшуюся структуру.

Другой русский металлург – Д.К. Чернов впоследствии объяснил происхождение уникальных свойств булата, связав их со структурой. Дендриты состоят из тугоплавкой, но относительно мягкой стали, а пространство меж их «ветвями» заполняется в процессе застывания металла более насыщенной углеродом, а следовательно, и более твердой сталью. Отсюда большая твердость и большая вязкость одновременно. При ковке этот стальной «гибрид» не разрушается, сохраняется его древовидная структура, но только из прямолинейной она превращается в зигзагообразную. Особенности рисунка в значительной мере зависят от силы и направления ударов, от мастерства кузнеца.

Дамасская сталь древности – это тот же булат, но позднее так называли сталь, полученную путем кузнечной сварки из многочисленных стальных проволочек или полос. Проволочки делались из сталей с разным содержанием углерода, отсюда те же свойства, что и у булата. В средние века искусство приготовления такой стали достигло наибольшего развития. Известен японский клинок, в структуре которого обнаружено около 4 млн микроскопически тонких стальных нитей. Естественно, процесс изготовления оружия из дамасской стали еще более трудоемок, чем процесс изготовления булатных сабель.

Сыродутный процесс во многом зависел от погоды: нужно было, чтобы ветер обязательно задувал в «трубу». Стремление избавиться от капризов погоды привело к созданию мехов, которыми раздували огонь в сыродутном горне. С появлением мехов отпала надобность устраивать сыродутные горны на склонах. Появились печи нового типа – так называемые волчьи ямы, которые выкапывали в земле, и домницы, которые возвышались над землей. Их делали из камней, скрепленных глиной. В отверстие у основания домницы вставляли трубку мехов и начинали раздувать печь. Уголь сгорал, а в горне печи оставалась уже знакомая нам крица. Обычно, чтобы вытащить ее наружу, выламывали несколько камней в нижней части печи. Затем их опять закладывали на место, заполняли печь углем и рудой, и все начиналось сначала.

При извлечении крицы из печи выливался и расплавленный чугун – железо, содержащее более 2% углерода плавящееся при более низких температурах. В твердом виде чугун нельзя ковать, он разлетается на куски от одного удара молотом. Поэтому чугун, как и шлак, считался вначале отходом производства. Англичане даже назвали его «свинским железом» – pig iron. Только потом металлурги сообразили, что жидкий чугун можно заливать в формы и получать из него различные изделия, например пушечные ядра. К XIV...XV вв. доменные печи, производившие чугун, прочно вошли в промышленность. Высота их достигала 3 м более, они выплавляли литейный чугун, из которого лили уже не только ядра, но и сами пушки. Подлинный поворот от домницы к домне произошел лишь в 80-х годах XVIII в., когда одному из демидовских приказчиков пришла в голову мысль подавать дутье в доменную печь не через одно сопло, а через два, расположив их по обеим сторонам горна. Число сопел, или фурм (как их теперь называют), росло, дутье становилось все более равномерным, увеличивался диаметр горна, повышалась производительность печей.

Еще два открытия сильно повлияли на развитие доменного производства. Долгие годы топливом доменных печей был древесный уголь. Существовала целая отрасль промышленности, занимавшаяся выжиганием угля из дерева. В результате леса в Англии вырубили до такой степени, что был издан специальный указ королевы, запрещающий уничтожать лес ради нужд черной металлургии. После этого английская металлургия стала быстро хиреть. Британия была вынуждена ввозить чугун из-за границы, главным образом из России. Так продолжалось до середины XVIII в., когда Абрагам Дерби нашел способ получения кокса из каменного угля, запасы которого в Англии очень велики. Кокс стал основным топливом для доменных печей. В 1829 г. Дж. Нилсон на заводе Клейд (Шотландия) впервые применил вдувание в домны нагретого воздуха. Это нововведение повысило производительность печей и резко снизило расход топлива. Последнее значительное усовершенствование доменного процесса произошло уже в наши дни. Суть его – замена части кокса дешевым природным газом.

Процесс производства стали сводится в сущности к выжиганию из чугуна примесей, к окислению их кислородом воздуха. То, что делают металлурги, рядовому химику может показаться бессмыслицей: сначала восстанавливают окисел железа, одновременно насыщая металл углеродом, кремнием, марганцем (производство чугуна), а потом стараются выжечь их. Обиднее всего, что химик совершенно прав: металлурги применяют явно нелепый метод. Но другого у них не было. Главный металлургический передел – производство стали из чугуна – возник в XIV в. Сталь тогда получали в кричных горнах. Чугун помещали на слой древесного угля, расположенный выше фурмы для подачи воздуха. При горении угля чугун плавился и каплями стекал вниз, проходя через зону, более богатую кислородом, – мимо фурмы. Здесь железо частично освобождалось от углерода и почти полностью от кремния и марганца. Затем оно оказывалось на дне горна, устланном слоем железистого шлака, оставшегося после предыдущей плавки. Шлак постепенно окислял углерод, еще сохранившийся в металле, отчего температура плавления металла повышалась, и он загустевал. Образовавшийся мягкий слиток ломом поднимали вверх. В зоне над фурмой он еще раз переплавлялся, при этом окислялась еще какая-то часть содержащегося в железе углерода. Когда после переплавки на дне горна образовывалась 50...100-килограммовая крица, ее извлекали из горна и тут же отправляли на проковку, цель которой была не только уплотнить металл, но и выдавать из него жидкие шлаки.

Наиболее совершенным железоделательным агрегатом прошлого была пудлинговая печь, изобретенная англичанином Генри Кортом в конце XVIII в. (Кстати, он же изобрел и прокатку профильного железа на валках с нарезанными в них калибрами. Раскаленная полоса металла, проходя через калибры, принимала их форму.). Пудлинговая печь Корта загружалась чугуном, а подина (дно) и стены ее были футерованы железной рудой. После каждой плавки их подновляли. Горячие газы из топки расплавляли чугун, а потом кислород воздуха и кислород, содержащийся в руде, окисляли примеси. Пудлинговщик, стоящий у печи, помешивал в ванне железной клюшкой, на которой осаждались кристаллы, образующие железную крицу. После изобретения пудлинговой печи в этой области черной металлургии долго не появлялось ничего нового, если не считать разработанного англичанином Гунстманом тигельного способа получения высококачественной стали. Но тигли были малопроизводительны, а развитие промышленности и транспорта требовало все большего, и большего количества стали.

Нахождение в периодической таблице Д.И.Менделеева.

Происхождение слова «металл»

Слово «металл» заимствовано из немецкого языка в старорусский период. Отмечается в «Травнике» Николая Любчанина, написанном в 1534 году: «...злато и сребро всех металей одолеваетъ». Окончательно усвоено в Петровскую эпоху. Первоначально имело общее значение «минерал, руда, металл»; разграничение этих понятий произошло в эпоху М.В. Ломоносова.

Немецкое слово «metall» заимствовано из латинского языка, где «metallum» – «рудник, металл». Латинское в свою очередь заимствовано из греческого языка (μεταλλον – «рудник, копь»)

 


Дата добавления: 2015-07-16; просмотров: 110 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Химические свойства меди.| История как процесс развития в природе и обществе

mybiblioteka.su - 2015-2024 год. (0.011 сек.)