Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Методические и теоретические основы работы

Читайте также:
  1. Amazon (выручка 67,9 млрд., конверсия 4%, средний чек $100) 35% выручки ритейлер относит к результатам успешной работы сross-sell и up-sell[22].
  2. G. Методические подходы к сбору материала
  3. I I I Основы теории механизмов и машин (ТММ)
  4. I I. Основы взаимозаменяемости
  5. I этап работы проводится как часть занятия
  6. I. ВЫБОР ТЕМЫ КУРСОВОЙ РАБОТЫ
  7. I. Задание для самостоятельной работы

ОПРЕДЕЛЕНИЕ СКОРОСТИ РАСПРОСТРАНЕНИЯ ПРОДОЛЬНЫХ ЗВУКОВЫХ ВОЛН

В ВОЗДУХЕ И ТВЕРДЫХ ТЕЛАХ

ЦЕЛЬ РАБОТЫ

 

Изучение волновых процессов на примере продольных звуковых волн, возбуждаемых в воздушном канале и в твер-дых телах. Измерение скоростей распространения продоль-ных звуковых волн в воздухе и в металлических стержнях.

 

 

МЕТОДИЧЕСКИЕ И ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ

 

Продольные звуковые волны в газах и металлах пред-ставляют собой периодические чередования сжатий и раз-режений в соответствующей среде. При этом перенос энер-гии осуществляется без переноса вещества, т.е. частицы среды не вовлекаются в поступательное движение среды, в которой распространяется звуковая волна, а совершают ко-лебания относительно своих положений равновесия. Вслед-ствие взаимодействия между частицами эти колебания рас-пространяются в среде с некоторой скоростью , образуя бегущую волну.

Уравнение бегущей волны, если фронт её можно полагать плоским, а распространение происходит вдоль оси , имеет вид:

 

, (8.1)

 

где – смещение колеблющихся частиц;

– скорость распространения волны.

Решение уравнения (8.1) при распространении волны в безграничной среде описывается функцией:

 

, (8.2)

 

где – циклическая частота;

– частота колебаний;

– волновое число;

– период колебаний;

– длина волны;

– текущее время;

– значение координаты вдоль оси ;

– начальная фаза волны;

– амплитуда волны.

В тех случаях, когда на пути бегущей волны встречается преграда, отраженная волна интерферирует с падающей и образуется стоячая волна. Если начало отсчета выбрать таким образом, чтобы разность начальных фаз падающей и отраженной волн равнялась нулю, то уравнение стоячей волны примет вид:

 

(8.3)

 

Из уравнения (8.3) видно, что в каждой точке стоячей волны с координатой совершаются гармонические коле-бания той же частоты , что и у встречных волн. Ампли-туда указанных колебаний зависит от величины , и мо-дуль её определяется по формуле:

 

. (8.4)

В точках, координаты которых удовлетворяют условию:

 

(8.5)

 

где , амплитуда колебаний (по модулю) макси-мальна. Эти точки называются пучностями стоячей волны. Из соотношения (8.5) следует, что значения координат пуч-ностей равны:

. (8.6)

 

Пучность представляет собой не точку, а плоскость, в которой совершаются колебания, описываемые соотноше-нием (8.3) при .

В точках, координаты которых удовлетворяют условию:

 

, (8.7)

 

где , амплитуда колебаний минимальна. Эти точ-ки называются узлами. Их координаты:

 

. (8.8)

 

Узел, как и пучность, представляет собой не точку, а плос-кость, точки которой имеют координату , определяемую со-отношением (8.8).

Из соотношений (8.6) и (8.7) следует, что расстояние между соседними пучностями (или узлами) равно . Пуч-ности и узлы сдвинуты друг относительно друга на чет-верть длины волны. Указанные факты используются для экспериментального определения длины волны колебаний. Наиболее целесообразно, если не возникает каких-либо препятствий технического характера, определять длину волны путем измерения расстояния между пучностями. По известной частоте источника колебаний и измеренной дли-не волны определяется скорость распространения волн:

 

. (8.9)

 

Скорость перемещения частиц равна первой производной от соотношения (8.2) и также имеет свои пучности и узлы, совпадающие с узлами и пучностями смещения. При этом, ко-гда смещение и деформация, равная

 

, (8.10)

 

достигают максимальных значений, скорость частиц обра-щается в нуль и наоборот.

Соответственно, дважды за период происходит превра-щение энергии стоячей волны то полностью в кинетическую (пучность скорости), то полностью в потенциальную (пуч-ность деформации). В результате происходит переход энер-гии от каждого узла к соседним с ним пучностям и обратно. Средний по времени поток энергии в любом поперечном сечении стоячей волны равен 0.

Хотя общий характер распространения продольных зву-ковых волн в металлах и газах одинаков, расчетные зна-чения их фазовых скоростей определяются по различным соотношениям, что обусловлено различиями в степени связи между частицами в различных средах. Скорость распростра-нения звуковых волн в газе:

 

, (8.11)

 

где – постоянная адиабаты (для воздуха );

Дж ·моль К – универсальная газовая постоянная;

– термодинамическая температура, К;

– молярная масса газа (для воздуха кг·моль ).

Скорость распространения продольных звуковых волн в металлических стержнях равна:

 

, (8.12)

 

где – модуль Юнга, Па;

– плотность материала стержня, кг·м ;

Значения модуля Юнга и плотности для используемых в лабораторной работе материалов приведены в таблице 1.

 

Таблица 1


Дата добавления: 2015-07-15; просмотров: 47 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ| ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

mybiblioteka.su - 2015-2024 год. (0.013 сек.)