Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Матем. модель СМ в координатах d, q – ротора.

Читайте также:
  1. I. МОДЕЛЬ
  2. I. Модель мыслительного процесса.
  3. II. Учебно-информационная модель
  4. II.Модель с фиксированным уровнем запасов.
  5. Quot;Ньюландия" – игровая модель самоуправления
  6. V 1 Тема 2 Юридическая модель налогового правонарушения
  7. V-подібна модель

Метод 2-х реакций – метод Блондоля.

Введем в рассмотрение систему координат (d, q), связанную с ротором и вращающуюся вместе с ним. Ее скорость в электрическом пространстве всегда равна синхронной скорости Zpω=ω0эл.

Продольная ось – ось вдоль полюсов индуктора – d. Поперечная ось q – поперёк индуктора. Рассмотрим магнитные потоки реакции якоря по осям d и q, будем считать что эти магнитные потоки не оказывают влияние друг на друга.

 

 

Ток обмотки якоря согласно принятой методики можно представить как сумму продольной и поперечной составляющих.

При принятом методе расчёта магн. Потоки Фad Фaq создают синусоидальные ЭДС . Ур-е 7, 8 – действ. Значения основной гармоники ЭДС реакции якоря, Id – ток нагрузки якоря, индуктивности по продольной и поперечной осям являются параметрами СМ, кот. Будут увязывать токи, Е и магн. Потоки.

Индуктивности , определяются конструкциями машины: магн. Св-ми материала, геометрией (длина возд. Зазора, полюсное деление машины, число пар полюсов. 9 – ЭДС магнитного потока рассеяния обмотки якоря, 10, 11—полные ЭДС СМ по продольной и поперечной осям; 12-13 – полные индуктивные сопротивления маш по продольной и поперечной осям. 14 – ур-е напряж. Обмотки якоря СМ. -- ЭДС самоиндукции магн. Потока рассеяния, - ток и активное сопротивление обиотки якоря. -- напряжение, подаваемое на выводы обм. Якоря.

 

Система генератор-двигатель: схемная реализация, принцип работы, область применения.

Система «генератор – двигатель» выгодно отличается тем, что в ней отсутствуют силовые контакторы, реостаты и т.п. Поскольку управление двигателем осуществляют путем регулирования сравнительно небольших токов возбуждения, управление легко поддается автоматизации.

Установки типа «генератор–двигатель» получили широкое распространение в промышленности и на транспорте, в тех устройствах, где требуется регулирование частоты вращения в широких пределах. В транспортных установках генератор приводится во вращение дизелем. В промышленности обычно для привода генератора используют трехфазные синхронные или асинхронные двигатели.

Систему «генератор – двигатель» широко применяют в металлургической промышленности для привода прокатных станов с двигателями мощностью 10 000 кВт и более при диапазоне регулирования частоты вращения 1:200 и точности поддержания заданной частоты вращения (погрешности) менее 1%.

Следует отметить, что в этой системе уменьшение частоты вращения производят с использованием рекуперативного торможения: сначала, увеличивая ток возбуждения двигателя, а затем, постепенно уменьшая ток возбуждения генератора, можно перевести двигатель в генераторный режим и быстро затормозить механизм. При этом накопленная кинетическая энергия якоря и механизма отдается в электрическую сеть.

Рис. 2.77 – Схема регулирования двигателя с независимым возбуждением при питании его от генератора

Если нагрузка толчкообразная, то иногда на валу первичного двигателя, вращающего генератор, ставят маховик, который уменьшает перегрузки первичного двигателя.

Недостатки системы «генератор–двигатель»:

1) большие масса, габариты и стоимость установки;

2) сравнительно низкий к. п. д. (порядка 0,6 – 0,7), так как производится трехкратное преобразование энергии.

В последнее время на транспорте (тепловозы, большие автомобили, корабли и т.п.) вместо генератора постоянного тока в системе «генератор–двигатель» применяют синхронный генератор с полупроводниковым выпрямителем. Это позволяет снизить вес и уменьшить стоимость генератора. В промышленных установках такое усовершенствование не получило широкого распространения, так как из-за выпрямителя теряется возможность рекуперативного торможения.

Система «управляемый выпрямитель–двигатель». Развитие полупроводниковой техники позволило применить для регулирования частоты вращения двигателя управляемый выпрямитель УВП, выполненный на тиристорах, где одновременно с выпрямлением производится регулирование выпрямленного напряжения (рис. 2.78). Применение системы «управляемый выпрямитель – двигатель» позволяет увеличить коэффициент полезного действия и уменьшить массу установки.

 

Рис. 2.78. Схема регулирования двигателя с независимым возбуждением при питании его от управляемого вентильного преобразователя

Если требуется быстрая остановка механизма, с последующим реверсированием, то для осуществления рекуперативного торможения параллельно с выпрямителем ставят инвертор, т.е. еще один полупроводниковый преобразователь, позволяющий отдавать электрическую энергию от машины постоянного тока в сеть переменного тока.

Недостатком системы «управляемый выпрямитель–двигатель» является низкий коэффициент мощности при пониженном выходном напряжении. Кроме того, несколько ухудшается коммутация двигателя из-за пульсаций тока якоря. Особенно велики пульсации тока при питании от сети однофазного тока (электровозы переменного тока), где обеспечение удовлетворительной коммутации вырастает в большую проблему.

В настоящее время система «управляемый выпрямитель–двигатель» имеет меньшую надежность, чем система «генератор – двигатель», из-за сложности полупроводникового оборудования, особенно системы управления.


Дата добавления: 2015-07-15; просмотров: 86 | Нарушение авторских прав


Читайте в этой же книге: БИЛЕТ № 6 | Огонь на коллекторе и способы улучшения коммутации машины постоянного тока. | Системы возбуждения коллекторных машин постоянного тока (схемы и уравнения напряжения, ЭДС, момента). | Билет №9. | Электромагнитный момент, мощность и угловые характеристики неявнополюсной СМ. | Определение МДС реакции якоря машины постоянного тока. Характеристики генератора постоянного тока: к. з., х. х., регулировочная, нагрузочная, внешняя. | Билет 11 | Методы регулирования скорости двиг пост тока последовательного возбуждения: механич и токовые хар-ки, основные уравн-я | Билет 13 | Методы регулир ск двиг-ля пост тока смешан возб: мех-ие и токовые хар-ки, основные уравнения |
<== предыдущая страница | следующая страница ==>
Статическая устойчивость СМ| Билет 16

mybiblioteka.su - 2015-2024 год. (0.008 сек.)