Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

способ. Метод элементарных преобразований.

Читайте также:
  1. Crown Down-методика (от коронки вниз), от большего к меньшему
  2. Cостав и расчетные показатели площадей помещений центра информации - библиотеки и учительской - методического кабинета
  3. I 0.5. МЕТОДЫ АНАЛИЗА ЛОГИСТИЧЕСКИХ ИЗДЕРЖЕК
  4. I. Общие методические приемы и правила.
  5. I. Организационно-методический раздел
  6. I. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ
  7. I. Семинар. Тема 1. Понятие и методологические основы системы тактико-криминалистического обеспечения раскрытия и расследования преступлений

 

.

 

Получили 2-е нулевые строки. Поэтому ранг А равен 2 (очевидно минор второго порядка ).

Ответ: .

 

Контрольная работа № 2

“СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ”

ЗАДАНИЕ 1. Решить системы матричным способом и по формулам Крамера:

1. а) ; б) .
2. а) ; б) .
3. а) ; б) .
4. a) ; б) .
5. а) ; б) .
6. а) ; б) .
7. а) ; б) .
8. а) ; б) .
9. а) ; б) .
10. а) ; б) .
11. а) ; б) .
12. а) ; б) .
13. а) ; б) .
14. а) ; б) .
15. а) ; б) .
16. а) ; б) .
17. а) ; б) .
18. а) ; б) .
19. а) ; б) .
20. a) ; б) .
21. а) ; б) .
22. а) ; б) .
23. а) ; б) .
24. а) ; б) .
25. а) ; б) .
26. а) ; б) .
27. а) ; б) .
28. а) ; б) .
29. а) ; б) .
30. а) ; б) .

Задание 2. Решить системы методом Гаусса:

1. а) ; б) ;
в) ; г) .
2. а) ; б) ;
в) ; г) ;
3. а) ; б) ;
в) ; г) .
4. а) ; б) ;
в) ; г) .
5. а) ; б) ;
в) ; г) .
6. а) ; б) ;
в) ; г) .
7. а) ; б) ;
в) ; г) .
8. 8. а) ; б) ;
в) ; г) .
9. а) ; б) ;
в) ; г) .
10. а) ; б) ;
в) ; г) .
11. а) ; б) ;
в) ; г) .
12. а) ; б) ;
в) ; г) .
13. а) ; б) ;
в) ; г) .
14. а) ; б) ;
в) ; г) .
15. а) ; б) ;
в) ; г) .
16. а) ; б) ;
в) ; г) .
17. а) ; б) ;
в) ; г) .
18. а) ; б) ;
в) ; г) ;
19. а) ; б) ;
в) ; г) .
20. а) ; б) ;
в) ; г) .
21. а) ; б) ;
в) ; г) .
22. а) ; б) ;
в) ; г) .
23. а) ; б) ;
в) ; г) .
24. а) ; б) ;
в) ; г) .
25. а) ; б) ;
в) ; г) .
26. а) ; б) ;
в) ; г) .
27. а) ; б) ;
в) ; г) .
28. а) ; б) ;
в) ; г) .
29. а) ; б) ;
в) ; г) .
30. а) ; б) ;
в) ; г) .

 

 

Задание 3. Решить системы однородных уравнений:

1. а) ; б) .
2. а) ; б) .
3. а) ; б) .
4. а) ; б) .
5. а) ; б) .
6. а) ; б) .
7. а) ; б) .
8. а) ; б) .
9. а) ; б) .
10. а) ; б) .
11. а) ; б) .
12. а) ; б) .
13. а) ; б) .
14. а) ; б) .
15. а) ; б) .
16. а) ; б) .
17. а) ; б) .
18. а) ; б) .
19. а) ; б) .
20. а) ; б) .
21. а) ; б) .
22. а) ; б) .
23. а) ; б) .
24. а) ; б) .
25. а) ; б) .
26. а) ; б) .
27. а) ; б) .
28. а) ; б) .
29. а) ; б) .
30. а) ; б) .

 

Образец выполнения контрольной работы № 2

“СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ”

1) Решить систему матричным способом: .

Решение. Пусть . Тогда данную систему можно записать в виде матричного уравнения . Решаем его, домножая слева на обратную матрицу: Отсюда получаем решение . Найдем сначала .

.

,значит ).

Составляем обратную матрицу

Найдем

,

т. е. .

Проверка. Подставим найденное решение в исходную систему: (истина), (истина), (истина).

Ответ: .

 

 

2) Решить систему методом Крамера.

Возьмем эту же систему и решим её с помощью определителей.

(найден выше).
, запишем определитель системы

 

Заменим в столбец коэффициентов при на столбец правых частей

.

Заменим в столбец коэффициентов при на столбец правых частей

 

Заменим в столбец коэффициентов при на столбец правых частей

 

.

 

По формулам Крамера получаем решение .

Ответ: .

 

3) Решить системы методом Гаусса:

а)

Выписываем расширенную матрицу и с помощью элементарных преобразований приводим ее или к треугольному виду, или к виду трапеции (как получится).

(3)

x y z

: (-1) : (-6)
.

.

Так как число неизвестных и равно рангу системы, система имеет единственное решение. По полученной матрице восстанавливаем систему уравнений. Идя снизу вверх, получаем это решение: .

Из последнего уравнения 3, с помощью второго находим Подставляя в первое уравнение найденные и находим

 

Ответ: .

 

б)

(-1)

Следовательно, по теореме Кронекера-Капелли система несовместна (т. е. не имеет решения). Выпишем уравнение, соответствующее последней строке полученной матрицы: , что невозможно.

Ответ: система не имеет решения.

 

в)

Записываем расширенную матрицу:

 

: (-1) .

 

. Отсюда следует, что система совместна.

Число неизвестных .Следовательно, система имеет бесконечное множество решений: . Отсюда система имеет одну свободную переменную, пусть это будет , тогда – базисные (базисных неизвестных столько, каков ранг системы, т. е. сколько ненулевых строк остается в последней матрице).

Запишем систему, соответствующую полученной матрице: .

Следовательно, идя снизу вверх, выражаем базисные неизвестные через свободную . Из второго уравнения выражаем из первого уравнения

Общее решение: .

Из общего решения можно получить любое частное решение. Пусть , тогда получим частное решение:

Частное решение: .

Выполним проверку общего решения. Для этого подставим найденные выражения в уравнения исходной системы:

 

Ответ: .

 


Дата добавления: 2015-07-14; просмотров: 75 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Решение.| ВИДЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

mybiblioteka.su - 2015-2024 год. (0.033 сек.)