Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Интерфейс CAN: общее описание и основные параметры, виды и форматы сообщений в CAN.

Читайте также:
  1. I.Основные положения
  2. II. ОПИСАНИЕ УСТАНОВКИ И МЕТОДА ИЗМЕРЕНИЯ
  3. II. Основные задачи
  4. II. Основные принципы и правила служебного поведения
  5. II. Теория метода и описание установки
  6. II.Общее равновесие с гибкими ценами.
  7. III. Гражданская война: причины, основные этапы, последствия.

Интерфейс CAN был разработан в конце 80-х годов фирмой Bosch для связи электронных устройств, применяемых в автомобилях.

Общее описание CAN. Сеть предназначена для коммуникации так называемых узлов, которые могут быть приемниками или передатчиками. Каждый узел состоит из двух составляющих: CAN-контроллера и приемопередатчика (трансивера). Контроллер реализует протокол обмена по сети CAN, а трансивер обеспечивает взаимодействие с сетью (передачу и прием сигналов).

На практике, согласно стандарту шина CAN обычно представляет собой витую пару, по которой передаются сигналы дифференциальным методом.

На рис. приведена структура CAN-сети. Обычно в качестве контроллера используется микроконтроллер, имеющий CAN-модуль, который имеет выход передатчика TxD последовательного кода и вход приемника RxD кода. Трансивер преобразует логические сигналы, то есть логические 0 и 1, в дифференциальное напряжение, поступающее на два провода шины, обозначенные CAN_H и CAN_L.

Согласно стандарту линия должна иметь волновое сопротивление в пределах 108-132 Ом. Для уменьшения отражений сигналов на каждом конце шины должны быть подключены согласующие резисторы RС сопротивлением 120 Ом. Для повышения надежности передачи и повышения помехоустойчивости иногда используют третий провод – общий, обозначаемый как GND. Питающее напряжение UCC (или UDD) по стандарту равно +5 В относительно GND.

Для абстрагирования от физической среды передачи спецификация CAN определяет два логических состояния (то есть логические 0 и 1) как рецессивное (recessive) и доминантное (dominant). При этом предполагается, что при передаче одним узлом сети рецессивного бита, а другим доминантного, принят будет доминантный бит.

В рецессивном состоянии (то есть логическая 1 на входе TxD трансивера) дифференциальное напряжение UDIFF =UCANH – UCANL меньше минимального порога (0,5 В на входе приемника или 0,05 В на выходе передатчика).

В доминантном состоянии (то есть логический 0 на входе TxD трансивера) дифференциальное напряжение UDIFF больше минимального порога (0,9 В на входе приемника или 1,5 В на выходе передатчика).

Сообщения в CAN. Интерфейс использует короткие сообщения: максимальный размер – 94 бита. Содержимое данных в CAN-сообщении как бы неявно определяет адрес источника этого сообщения и адреса приемников, кому эта информация необходима.

Например. один CAN-узел выдает на шину сообщение «Температура масла двигателя 80». Все другие узлы принимают это сообщение, но используют эту информацию только те узлы, кому она необходима.

Сообщения, передаваемые по CAN-шине, именуются кадрами или фреймами. В зависимости от инициатора передачи и ее цели существуют 4 типа кадров:

1) кадр данных, используется для передачи данных;

2) кадр запроса данных, используется для дистанционного запроса данных от удаленного узла;

3) кадр ошибки, когда обнаруживаются ошибки на шине;

4) кадр перегрузки, передается для задержки передачи пакетов кадр данных и кадр запроса, например, при неготовности приемника.

Вид стандартного формата сообщения кадр данных приведен на рис. Он состоит из семи различных битовых полей:

· Поле начала кадра состоит из одного доминантного бита, который служит также для синхронизации генераторов приемников и передатчика.

· Поле арбитража содержит 11-битный идентификатор ID и бит RTR – (запрос передачи данных). Для кадра данных этот бит должен иметь доминантный уровень.

· Управляющее поле состоит из шести битов. Два самых старших бита в настоящее время не используются. Четырехбитный код длины данных указывает число байтов в поле данных.

· Поле данных содержит от нуля до восьми байтов данных.

· Поле контрольной суммы включает в себя контрольную сумму сообщения (15 бит) и бит-разделитель рецессивного уровня.

· Поле подтверждения состоит из двух битов. Старший бит с именем Slot выставляет передающий узел рецессивного уровня. В случае, когда передача прошла успешно, приемный узел сигнализирует об этом установкой этого бита в доминантный уровень. Второй бит в этом поле является битом-разделителем рецессивного уровня.

· Поле конца кадра состоит из семи битов рецессивного уровня.

После конца кадра (EOF) следует поле промежутка, состоящее из трех битов рецессивного уровня. После этого промежутка шина считается свободной.


Дата добавления: 2015-12-07; просмотров: 88 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.006 сек.)