Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Явление радиоактивности

Читайте также:
  1. I. Проявление закона в материи
  2. АПК РФ, Статья 131. Отзыв на исковое заявление
  3. АПК РФ, Статья 132. Предъявление встречного иска
  4. Взаимодействие ощущений и явление синестезии
  5. Власть как социальное явление. Ресурсы власти.
  6. ВОЙНА - СТРАШНОЕ ЯВЛЕНИЕ
  7. Вопрос-заявление

Радиоактивность атомных ядер. Как уже отмечалось, историю ядерной физики принято отсчитывать с 1896 г., когда французский физик А. Беккерель обнаружил, что

содержащий уран минерал обладает способностью засве­чивать фотопластинку, завернутую в светонепроницаемую бумагу. Вскоре французские ученые, будущие лауреаты Нобелевской премии Пьер Кюри (1859—1906) и Мария Складовская-Кюри (1867—1934) обнаружили, что урано­вая смоляная руда обладает способностью давать излу­чение, в четыре раза превосходящее по интенсивности излучение урана, а в 1898 г. они выделили два новых хими­ческих радиоактивных элемента— полоний (28°Ро) и ра­дий (иНа). В дальнейшем было установлено, что причи­ной, приводящей к засвечиванию фотопластинки, является самопроизвольный распад атомных ядер урана. В резуль­тате такого распада возникает особое излучение, назван­ное радиоактивным, а само явление испускания радио­активного излучения — радиоактивностью.

В настоящее время под радиоактивностью понимают способность ядер самопроизвольно превращаться в дру­гие атомные ядра с испусканием радиоактивного излуче­ния. Радиоактивность подразделяется на естественную, источником которой являются изотопы, встречающиеся в природе, и искусственную, которая наблюдается у атомных ядер, являющихся продуктами ядерных реакций и не встречающихся в природе. Явление искусственной радио­активности было открыто французскими физиками Ирен Жолио-Кюри (1897—1956) — дочерью Пьера и Марии Кюри — и ее мужем Фредериком Жолио-Кюри (1900— 1958) и отмечено Нобелевской премией в 1935 г. Принци­пиального различия между обоими видами радиоактив­ности нет, так как они подчиняются одинаковым законам.

Изучение состава радиоактивного излучения позволи­ло установить, что по проникающей способности его можно разделить на три различных компонента (рис. 13.10), кото­рые впоследствии были названы по первым буквам гре­ческого алфавита: альфа (а)-, бета (Р)- и гамма ьиз­лучениями. Исследования показали, что а-излучение пред­ставляет собой поток положительно заряженных ядер гелия Не++, р-излучение — поток электронов или пози­тронов, а-излучение — поток коротковолнового электро­магнитного излучения.

Альфа-распад. Типичным примером радиоактивно­го распада ядер является реакция

(13.17)

При а-распаде ядро урана-238 превращается в ядро с зарядовым числом Z = 90 и массовым числом А = 234,

ямы на глубине. Ее точная форма неизвестна, так как внутри ядра в мощном поле ядерных сил а-частица, по-видимому, теряет свою индивидуальность. Так как пол­ная энергия а-частицы равна Еа, то именно с этой энергией будет двигаться а-частица на большом расстоянии от ядра, где электростатический потенциал спадает до нуля (см. рис. 13.11, а). Волновая функция а-частицы внутри ядра представляет стоячую волну с амплитудой В\. Вслед­ствие туннельного эффекта эта волновая функция имеет за пределами электростатического барьера U = U(r) не­большой «хвост» с амплитудой В2. Следо­вательно, вероятность р обнаружить а-частицу за преде­лами барьера имеет вид

а вероятность испускания а-частицы в единицу времени, которая называется постоянной распада, будет равна

— постоянная распада, (13.23)

где п — число столкновений а-частицы с барьером в еди­ницу времени.

Величина, обратная постоянной распада, определяет среднее время жизни материнского ядра по отношению к а-распаду:

— среднее время жизни ядра. (13.24)

Если в образце в момент времени t содержится N ядер, то число распадов в секунду (т. е. скорость уменьшения числа ядер) равно N/т.. Поэтому (13.25) Разделим переменные и выполним интегрирование:

Потенцируя обе части последнего равенства, получаем

(13.26)

Постоянную интегрирования находим из условия, что в начальный момент времени ^ = 0 число ядер равно N0. В результате получим закон уменьшения числа ядер радио­активного вещества: (13.27)

- закон радиоактивного распада.

Экспериментальные исследования подтверждают спра­ведливость полученного закона для всех трех видов рас­пада. На рис. 13.12 представлена кривая радиоактивного распада, определяемая формулой (13.27). Время, в тече­ние которого распадается половина начального числа атомных ядер, называется периодом полураспада (T\/z). Подставляя в формулу (13.27) значение N = N0/2 и t = = Ti/2, получаем уравнение связи между периодом полу­распада и средним временем жизни ядер:

(13.28)

 

 

ßà 12.Бонус. Формулы для задач.

3 15. Геометрическая оптика и фотометрия

Для сферического зеркала оптическая сила D опре­деляется формулой

где а1 и a2 — расстояния предмета и изображения от зеркала, R — радиус кривизны зеркала и F — его фо­кусное расстояние.

Расстояния, отсчитываемые от зеркала получу, счи­таются положительными, а против луча — отрицатель­ными. Если F выражена в метрах, то D выразится в диоптриях.

При переходе луча из одной среды в другую имеет место закон преломления света

Для тонкой линзы, помещенной в однородную среду, оптическая сила D определяется формулой

Уде at и а2 — расстояния предмета и изображения от линзы, п — относительный показатель преломления ма­териала линзы, R1, и R2—радиусы кривизны линзы. Правило знаков для линз такое же, как и для зеркал, оптическая сила двух тонких линз, сложенных вместе,

равна

где d1 и d2 — оптические силы линз.

Поперечное увеличение в зеркалах и линзах опреде­ляется формулой

где y — высота предмета и у' — высота изображения. Увеличение, даваемое лупой,

где L — расстояние наилучшего зрения и F — главное фокусное расстояние лупы.

Увеличение, даваемое микроскопом,

где L — расстояние наилучшего зрения, d — расстояние между фокусами объектива и окуляра, D4 и dz — опти­ческие силы объектива и окуляра.

 

Сила света I численно равна величине светового по­тока, приходящегося на единицу телесного угла:

Освещенность Е характеризуется величиной свето­вого потока, приходящегосяна единицу площади;

Точечный источник силой света I создает на площадке, отстоящей от него на расстоянии r, освещенность

где а — угол падения лучей.

Светимость R численно равна световому потоку, ис­пускаемому единицей площади светящегося тела:

Яркостью В светящейся поверхности называется ве­личина, численно равная отношению силы света с эле­мента излучающей поверхности к площади проекции этого элемента на плоскость, перпендикулярную напра­влению наблюдения (т. е. к видимой поверхности эле­мента):

где 0 — угол между нормалью к элементу поверхности и направлением наблюдения.

Если тело излучает по закону Ламберта, т. е. если яркость не зависит от направления, то светимость R и яркость В связаны соотношением

 

Радиусы светлых колец Ньютона (в проходящем све­те) определяются формулой

радиусы темных колец

где R — радиус кривизны линзы.

В отраженном свете расположение светлых и темных колец обратно их расположению в проходящем свете.

В дифракционной решетке минимумов света

В дифракционной решетке максимумы света

где а — ширина щели, ф — угол дифракции и k — длина волны падающего света где d — постоянная решетка

Постоянная, или период, решетки , где N-число щелей решетки, приходящееся на единицу длины решетки.

Разрешающая способность дифракционной решетки определяется формулой

где λ — общее число щелей решетки, k — порядок спектра, λ и Δλ — длины волн двух близких спектральных линий, еще разрешаемых решеткой.

Угловой дисперсией дифракционной решетки назы­вается величина

Линейной дисперсией дифракционной решетки назы­вается величина, численно равная

где F — фокусное расстояние линзы, проектирующей спектр на экран.

При отражении, естественного света от диэлектриче­ского зеркала имеют место формулы Френеля:

и

Если то /ц=0. В этом случае угол падения i и показатель преломления п диэлектрического зеркала связаны соотношением (закон Брюстера).

Интенсивность света, прошедшего через поляризатор и анализатор, равна (закон Малюса)

 


Дата добавления: 2015-12-08; просмотров: 111 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.011 сек.)