Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Принципы неопределенности, суперпозиции

Читайте также:
  1. II. Основные принципы и правила служебного поведения
  2. II. ЦЕЛИ, ЗАДАЧИ И ПРИНЦИПЫ ДЕЯТЕЛЬНОСТИ ВОИ
  3. II. Цели, принципы и задачи регулирования миграционных процессов в Российской Федерации
  4. А. ОСНОВНОЙ КУРС 1. Принципы законодательства
  5. Архитектурные принципы европейского модерна
  6. Библиотека Microsoft Foundation Classes. Необходимость библиотеки MFC. Принципы построения библиотеки MFC. Основные возможности библиотеки MFC.
  7. Билет 21. Аксиомы» сравнительного правоведения. Принципы сравнительно-правового исследования.

Состояние определяется параметрами, сохраняющими свои значения при неизменных внешних условиях. Эту величину ввел в науку И. Ньютон. Различают устойчивое (стационарное) и неустойчивое состояние. Переход системы из одного состояния в другое означает процесс.

Принцип неопределенности. Волновые функции, используемые в квантовой механике для описания микрочастиц, дают возможность установить вероятность их нахождения в том или ином месте про­странства в соответствии с принципом неопределенности. Такое по­ложение связано с двойственностью частиц микромира. Если считать микроструктуру частицей, то она должна быть локализована в пространстве, а если считать ее волной, то она формально занимает все пространство.

Вероятностный характер волновых функций приводит к парадок­сальному выводу: если мы какую-то группу параметров микрочастиц можем знать более или менее точно (с небольшой погрешностью), то существует однозначно связанная с ней другая группа параметров, одновременные сведения о которых принципиально получить нельзя. Такими взаимно противоположными, дополнительными, или канонически сопряженными, переменными в микромире являются координаты и скорость (или импульс), энергия и время, направление и величина момента импульса, кинетическая и потенциальная энергии, напряженность электрического поля в данной точке и число фотонов и др. В 1927 г. В. Гейзенберг, один из создателей квантовой механики, установил фундаментальное положение квантовой теории – принцип неопределенности.

Никакой эксперимент не может привести к одновременно точному измерению таких динамических переменных. При этом неопределенность в измерениях связана не с несовершенством экспериментальной техники, а с объективными свойствами микрообъектов. Таким образом, соотношение неопределенностей является квантовым ограничением применимости классической механики к микрообъектам.

По современным представлениям, квантовый объект – это одновременно и частица, и волна и оба являются классическими понятиями. Для возможно полного представления о микрообъекте мы должны использовать два разных типа приборов: один – для излучения вол­новых свойств, другой – для корпускулярных. Эти свойства несо­вместимы в отношении их одновременного проявления, но оба они в равной мере характеризуют микрообъект и поэтому не противоречат, а дополняют друг друга. Эта идея и положена Бором в основу важней­шего методологического принципа современной науки – принципа дополнительности.

Принцип суперпозиции. В физике при изучении линейных систем широко используется принцип суперпозиции: общий результат воздействия на систему многих факторов равен сумме результатов воздействия каждого отдельного фактора.

Плодотворным оказалось применение принципа суперпозиции при изучении микромира. Здесь он стал одним из фундаментальных принципов (наряду с соотношением неопределенностей), составляющих основу математического аппарата квантовой механики. Состояния микросистем описываются волновыми функциями.

 


Дата добавления: 2015-11-26; просмотров: 80 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.006 сек.)