Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Характеристика возбудимости и возбуждения рабочего кардиомиоцита, ПП, величина, ионный механизм, ПД его фазы, ионный механизм. Изменения возбудимости в фазы ПД.

Читайте также:
  1. A) генератор патологически усиленного возбуждения
  2. I. Нейромедиаторный механизм.
  3. V. Загальна характеристика відходів, що видаляються
  4. V. ОРГАНИЗАЦИОННЫЙ КОМИТЕТ И СУДЕЙСКАЯ КОЛЛЕГИЯ
  5. VII. Инвестиции, финансовые услуги, репутационный менеджмент
  6. А) процесс изменения морфо-функциональных свойств организма на протяжении индивидуальной жизни.
  7. А) Характеристика методів візуалізації сечової системи, показання до застосування, їх можливості та обмеження.

Клетки миокарда обладают возбудимостью, но им не присуща автоматия. В период диастолы мембранный потенциал покоя этих клеток стабилен, и его величина выше, чем в клетках водителей ритма (80–90 мВ). Потенциал действия в этих клетках возникает под влиянием возбуждения клеток водителей ритма, которое достигает кардиомиоцитов, вызывая деполяризацию их мембран.

Потенциал действия клеток рабочего миокарда состоит из фазы быстрой деполяризации, начальной быстрой реполяризации, переходящей в фазу медленной реполяризации (фаза плато) и фазы быстрой конечной реполяризации. Фаза быстрой деполяризации создается резким повышением проницаемости мембраны для ионов натрия, что приводит к возникновению быстрого входящего натриевого тока. Последний, однако, при достижении мембранного потенциала 30–40 мВ, инактивируется и в последующем, вплоть до инверсии потенциала (около +30 мВ) и в фазу «плато», ведущее значение имеют кальциевые ионные токи. Деполяризация мембраны вызывает активацию кальциевых каналов, в результате чего возникает дополнительный деполяризующий входящий кальциевый ток.

Конечная реполяризация в клетках миокарда обусловлена постепенным уменьшением проницаемости мембраны для кальция и повышением проницаемости для калия. В результате входящий ток кальция уменьшается, а выходящий ток калия возрастает, что обеспечивает быстрое восстановление мембранного потенциала покоя. Длительность потенциала действия кардиомиоцитов составляет 300–400 мс, что соответствует длительности сокращения миокарда.

Инициатором сокращения миокарда, как и в скелетной мышце, является потенциал действия, распространяющийся вдоль поверхностной мембраны кардиомиоцита. Поверхностная мембрана волокон миокарда образует впячивания, так называемые поперечные трубочки (Т-система), к которым примыкают продольные трубочки (цистерны) саркоплазматического ретикулюма, являющиеся внутриклеточным резервуаром кальция (рис. 3). Саркоплазматический ретикулюм в миокарде выражен в меньшей степени, чем в скелетной мышце. Нередко к поперечной Т-трубочке примыкают не две продольные трубочки, а одна (система диад, а не триад, как в скелетной мышце). Считается, что потенциал действия распространяется с поверхностной мембраны кардиомиоцита вдоль Т-трубочки вглубь волокна и вызывает деполяризацию цистерны саркоплазматического ретикулюма, что приводит к освобождению из цистерны ионов кальция.

Следующим этапом электромеханического сопряжения является перемещение ионов кальция к сократительным протофибриллам. Сократительная система сердца представлена сократительными белками – актином и миозином, и модуляторными белками – тропомиозином и тропонином. Молекулы миозина формируют толстые нити саркомера, молекулы актина – тонкие нити. В состоянии диастолы тонкие актиновые нити входят своими концами в промежутки между толстыми и более короткими миозиновыми нитями. На толстых нитях миозина располагаются поперечные мостики, содержащие АТФ, а на нитях актина – модуляторные белки – тропомиозин и тропонин. Эти белки образуют единый комплекс, блокирующий активные центры актина, предназначенные для связывания миозина и стимуляции его АТФазной активности. Сокращение волокон миокарда начинается с того момента, когда тропонин связывает вышедший из саркоплазматического ретикулюма в межфибриллярное пространство кальций. Связывание кальция вызывает изменения конформации тропонин-тропомиозинового комплекса. В результате этого открываются активные центры, и происходит взаимодействие актиновых и миозиновых нитей. При этом стимулируется АТФазная активность миозиновых мостиков, происходит распад АТФ и выделяющаяся энергия используется на скольжение нитей друг относительно друга, приводящее к сокращению миофибрилл. В отсутствие ионов кальция тропонин препятствует образованию актомиозинового комплекса и усилению АТФазной активности миозина. Морфологические и функциональные особенности миокарда свидетельствуют о тесной связи между внутриклеточным депо кальция и внеклеточной средой. Так как запасы кальция во внутриклеточных депо невелики, большое значение имеет вход кальция в клетку во время генерации потенциала действия (рис. 3). Потенциал действия и сокращение миокарда совпадают во времени. Поступление кальция из наружной среды в клетку создает условия для регуляции силы сокращения миокарда. Большая часть входящего в клетку кальция, очевидно, пополняет его запасы в цистернах саркоплазматического ретикулюма, обеспечивая последующие сокращения.

Удаление кальция из межклеточного пространства приводит к разобщению процессов возбуждения и сокращения миокарда. Потенциалы действия при этом регистрируются почти в неизменном виде, но сокращения миокарда не происходит. Вещества, блокирующие вход кальция во время генерации потенциала действия, вызывают аналогичный эффект. Вещества, угнетающие кальциевый ток, уменьшают длительность фазы плато и потенциала действия и понижают способность миокарда к сокращению. При повышении содержания кальция в межклеточной среде и при введении веществ, усиливающих вход этого иона в клетку, сила сердечных сокращений увеличивается. Таким образом, потенциал действия выполняет роль пускового механизма, вызывая освобождения кальция из цистерн саркоплазматического ретикулюма, регулирует сократимость миокарда, а также пополняет запасы кальция во внутриклеточных депо.

4.


Билет №15


Дата добавления: 2015-10-31; просмотров: 164 | Нарушение авторских прав


Читайте в этой же книге: Парасимпатическая система. | I Проявление активности АНС. | Регуляция сокращений желудка. | Биомеханика выдоха. | Факторы, определяющие диффузию газов в легких. | Пищеварение в желудке. Регуляция желудочной секреции. Фазы отделения желудочного сока. Механизмы торможения желудочной секреции. Роль желудочного сока в пищеварении. | Классификации рефлексов. | Дыхательный центр (понятие). Отделы ДЦ и их функции (бульбо-понтийный, спинномозговой, гипоталамический, корковый отделы). | Дыхание при деятельности | Гуморальная, гормональная регуляция просвета сосудов. |
<== предыдущая страница | следующая страница ==>
Патологические соединения гемоглобина с кислородом.| Утомление. Его виды. Субьективные и обьективные критерии утомления. Теории утомления.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)